ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-12-67-75

УДК: 004.021:004.415.2:004.622:004.623:004.624:004.67:681.518.3:681.586004.93'1:004.932.2

Automatic estimation of human blood pressure based on the joint analysis of morphological and spectral parameters of the photoplethysmogram67-75

For Russian citation (Opticheskii Zhurnal):

Залуская В.С., Карасева Е.А., Луцив В.Р. Автоматическое оценивание давления крови человека на основе совместного анализа морфологических и спектральных параметров фотоплетизмограммы // Оптический журнал. 2020. Т. 87. № 12. С. 67 –75. http://doi.org/10.17586/1023-5086-2020-87-12-67-75

 

For citation (Journal of Optical Technology):
V. S. Zaluskaya, E. A. Karaseva, and V. R. Lutsiv, "Automatic estimation of human blood pressure based on the joint analysis of morphological and spectral parameters of the photoplethysmogram," Journal of Optical Technology. 87(12), 750-755 (2020). https://doi.org/10.1364/JOT.87.000750  
Abstract:

A method for the automatic assessment of the systolic and diastolic blood pressure of people by means of a joint analysis of spectral and morphological features of the pulse waveform on a photoplethysmogram is proposed. For extraction of the used features, algorithms have been developed for the preliminary processing of the original photoplethysmogram signal, its automatic division into periods corresponding to individual cardiac cycles, and the selection of characteristic features of the pulse waveform in each period. The selected signal periods are used to calculate the spectral characteristics of the photoplethysmogram, and the expediency of using triplets of successive cycles for this purpose is shown experimentally. The parameters calculated from the features of the pulse waveform and its calculated spectral characteristics are automatically analyzed using a specially trained artificial neural network, which forms an estimate of the patient’s systolic and diastolic blood pressure at the output. The expediency of automatic determination of blood pressure based on the joint analysis of spectral and morphological characteristics of photoplethysmograms is shown experimentally.

Keywords:

photoplethysmogram, blood pressure measurement, neural network, spectral features, morphological features

OCIS codes: 170.3890, 170.1610, 280.1415, 120.5240, 230.3990, 230.0230, 280.4788, 080.1753

References:
1. N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–547 (2014).
2. P. Dung, L. Y. Siong, P. Pubudu, and S. Aruna, “Smartwatch: performance evaluation for long-term heart rate monitoring,” in International Symposium on Bioelectronics and Bioinformatics (ISBB) (2015), pp. 144–147.
3. M. Nichols, N. Townsend, P. Scarborough, and M. Rayner, “Cardiovascular disease in Europe: epidemiological update,” Eur.
Heart J. 34(39), 3028–3034 (2013).
4. W. Chen, T. Kobayashi, S. Ichikawa, Y. Takeuchi, and T. Togawa, “Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration,” Med. Biol. Eng. Comput. 38(5), 569–574 (2000).
5. N. P. Constant, T. Wang, and K. Mankodiya, “Pulseband: a hands-on tutorial on how to design a smart wristband to monitor heart-rate,” in IEEE Virtual Conference on Applications of Commercial Sensors (VCACS) (2015).
6. A. O. Putri, A. Musab, M. Saad, and S. S. Hidayat, “Wearable sensor and Internet of Things technology for better medical science: a review,” Int. J. Eng. Technol. 7(4), 1–4 (2019).
7. E. Karaseva, “Development of a hardware-software measurement system for the collection, detection, and processing of
photoplethysmograms,” J. Opt. Technol. 87(1), 36–39 (2020).
8. D. Borchevkin, A. Shestakov, and V. Petrov, “Method of photoplethysmography diagnostics of domesticated animals cardiovascular diseases,” J. Vet. Sci. Technol. 7(1), 287 (2016).
9. B. Nenova and I. Iliev, “An automated algorithm for fast pulse wave detection,” Int. J. BIOautom. 14(3), 203–216 (2010).
10. B. Nenova and I. Iliev, “Non-invasive methods of peripheral pulse detection: advantages and disadvantages,” Annu. J. Electron. 1(1), 57–60 (2009).
11. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), 37–61 (2013).
12. V. Perkovic, R. Huxley, Y. Wu, D. Prabhakaran, and S. MacMahon, “The burden of blood pressure-related disease: a neglected priority for global health,” Hypertension 50(6), 991–997 (2007).
13. S. Lewington, “Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies,” Lancet 360(9349), 1903–1913 (2002).
14. R. Agarwal, “Role of home blood pressure monitoring in overcoming therapeutic inertia and improving hypertension control: a systematic review and meta-analysis,” Hypertension 57(1), 29–38 (2011).
15. R. Gircys, A. Liutkevicius, and E. Kazanavicius, “Photoplethysmography- based continuous systolic blood pressure estimation method for low processing power wearable devices,” Appl. Sci. 9(11), 2236–2252 (2019).
16. L. Yan, S. Hu, S. Alharbi, and P. Blanos, “A multiplexed electronic architecture for opto-electronic patch sensor to effectively monitor heart rate and oxygen saturation,” Proc. SPIE. 10501, 115–123 (2018).
17. T. Y. Abay and P. A. Kyriacou, “Reflectance photoplethysmography as noninvasive monitoring of tissue blood perfusion,” IEEE Trans. Biomed. Eng. 62(9), 2187–2195 (2015).
18. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
19. P. Wieringa Fokko, F. Mastik, and A. F.W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward ‘SpO2 camera’ technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
20. K. H. Shelley, D. Tamai, D. Jablanka, M. Gesquiere, R. G. Stout, and D. G. Silverman, “The effect of venous pulsation on the forehead pulse oximeter wave form as a possible source of error in Spo2 calculation,” Anesth. Analg. 100(3), 743–747 (2005).
21. A. I. Krupatkin, Clinical Neuroangiophysiology of the Extremities (Perivascular Innervation and Nervous Trophism) (Scientific World Publishing House, Moscow, 2003).
22. M. Elgendi, “On the analysis of fingertip photoplethysmogram signals,” Curr. Cardiol. Rev. 8(1), 14–25 (2012).
23. U. Rubins, A. Grabovskis, J. Grube, and I. Kukulis, “Photoplethysmography analysis of artery properties in patients with cardiovascular diseases,” in Proceedings of the 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (2008), pp. 319–322.
24. Keras documentation, https://keras.io/.
25. scikit-learn, https://scikit-learn.org/stable/documentation.html.
26. P. Su, X. R. Ding, Y. T. Zhang, J. Liu, F. Miao, and N. Zhao, “Long-term blood pressure prediction with deep recurrent neural networks,” in IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) (2018), pp. 323–328.