DOI: 10.17586/1023-5086-2020-87-03-17-27
УДК: 530.18:535
The subwavelength character of the ordered breakdown of condensed media by circularly polarized ultrashort-pulse laser radiation
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Макин В.С., Пестов Ю.И., Макин Р.С. Субволновой характер упорядоченного разрушения конденсированных сред циркулярно поляризованным ультракороткоимпульсным лазерным излучением // Оптический журнал. 2020. Т. 87. № 3. С. 17–27. http://doi.org/10.17586/1023-5086-2020-87-03-17-27
Makin V.S., Pestov Yu.I., Makin R.S. The subwavelength character of the ordered breakdown of condensed media by circularly polarized ultrashort-pulse laser radiation [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 3. P. 17–27. http://doi.org/10.17586/1023-5086-2020-87-03-17-27
V. S. Makin, Yu. I. Pestov, and R. S. Makin, "The subwavelength character of the ordered breakdown of condensed media by circularly polarized ultrashort-pulse laser radiation," Journal of Optical Technology. 87(3), 147-154 (2020). https://doi.org/10.1364/JOT.87.000147
This paper analyzes the published experimental data on the interaction of circularly polarized ultrashort-pulse laser radiation with condensed media. An explanation is proposed for the features of the subwavelength ordered breakdown of media with substantially different physical properties, based on the universal polariton model.
surface plasmon–polaritons, interaction, condensed media, ultrashort pulses, circular polarization, universal polariton model
Acknowledgements:The authors express gratitude to I. V. Arkanova for help in preparing the figures.
OCIS codes: 190.3270, 260.3230, 160.6030
References:1. J. Bonze, S. Holm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
2. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
3. V. S. Makin, R. S. Makin, A. Ya. Vorob’ev, and Ch. Guo, “Feigenbaum universality and Sharkovsky order in laser-induced periodic structures on the surfaces and in the volume of condensed media,” in Nonlinearity in Modern Natural Science, G. G. Malinetski˘ı, ed. (Izd. LKI, Moscow, 2009), pp. 303–322.
4. V. S. Makin and R. S. Makin, “Principles of the Interaction of Ultrashort Laser Radiation with Condensed Media (Part 1),” (DITI NIYaU MIFI, 2013).
5. F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Honninger, and R. Kling, “Controlling 2D laser nanostructuring over large areas with doubled femtosecond pulses,” Appl. Surf. Sci. 470, 677–686 (2019).
6. F. Fraggelakis, G. Giannuzzi, C. Gaudiuso, I. Manek-Honninger, G. Mincuzzi, A. Ancona, and R. Kling, “Double- and multi-femtosecond pulses produced by birefringent crystals for the generation of 2D laser-induced structures on a stainless steel surface,” Materials 12, 1257 (2019).
7. J.-M. Romano, A. Garcia-Giron, P. Penchev, and S. Dimov, “Triangular laser-induced submicron textures for functionalizing stainless steel surfaces,” Appl. Surf. Sci. 440, 162–169 (2018).
8. B. K. Nayak, K. Sun, C. Rothenbach, and M. C. Gupta, “Self-organized 2D periodic arrays of nanostructures in silicon by nanosecond laser irradiation,” Appl. Opt. 50(16), 2349–2355 (2011).
9. B. Oktem, S. Ilday, I. Pavlov, H. Kalaycioglu, A. Rybak, S. Yavas, M. Erdogan, and F. O. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
10. Y. Kalachyova, O. Lutakov, I. Goncharova, and V. Svorchik, “‘Artificial’ chirality induced in doped polymer by irradiation with circularly polarized excimer laser light,” Opt. Mater. Express 5(12), 2761–2767 (2015).
11. E. Rebollar, M. Castellejo, and T. A. Ezquerra, “Laser-induced periodic surface structures on polymer films: from fundamentals to applications,” Eur. Polym. J. 73, 162–174 (2015).
12. A. V. Kats and I. S. Spevak, “Forming surface periodic structures with circularly polarized radiation,” Opt. Spectrosc. (USSR) 67(6), 776–778 (1989) [Opt. Spektrosk. 67(6), 1320–1323 (1989)].
13. I. S. Spevak, V. M. Kontorovich, A. V. Kats, and V. K. Gavrikov, “Formation of surface structure by thermal action of coherent radiation,” Sov. Phys. JETP 66(1), 58–65 (1987) [Zh. Eksp. Teor. Fiz. 93(1), 104–117 (1987)].
14. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
15. C. W. Luo, “Nanoparticles and nanostructures fabricated using femtosecond laser pulses,” in Lasers: Applications in Science and Industry, K. Jakubczak, ed. (InTech, 2011), pp. 3–22.
16. O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
17. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
18. I. Ran, Z. Guo, and S. Qu, “Self-organized periodic surface structures on ZnO induced by femtosecond laser,” Appl. Phys. A 100(2), 517–521 (2010).
19. Y. He, J. Zhang, S. Singh, E. Garcell, A. Y. Vorobyev, B. Lam, Z. Zhan, J. Yang, and C. Guo, “Maskless laser nanolithography of glass through sequential activation of multi-threshold ablation,” Appl. Phys. Lett. 114, 133107 (2019).
20. A. Papadopoulos, E. Skoulus, A. Mimidis, G. Perrakis, G. Kenanakis, G. D. Tsibidis, and E. Stratakis, “Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring,” Adv. Mater. 31, 1901123 (2019).
21. M. Castillejo, T. Ezquerra, M. Martin, M. Qujja, S. Perez, and E. Rebolla, “Laser nanostructuring of polymers: ripples and applications,” AIP Conf. Proc. 1464, 372–380 (2012).
22. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).