DOI: 10.17586/1023-5086-2020-87-03-03-09
УДК: 535.342, 535.372, 539.231
Optical properties of J-aggregates of pseudoisocyanine dye on inhomogeneous island films
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Набиуллина Р.Д., Старовойтов А.А., Гладских И.А. Оптические свойства J-агрегатов псевдоизоцианинового красителя на неоднородных островковых пленках // Оптический журнал. 2020. Т. 87. № 3. С. 3–9. http://doi.org/10.17586/1023-5086-2020-87-03-03-09
Nabiullina R.D., Starovoytov A.A., Gladskikh I.A. Optical properties of J-aggregates of pseudoisocyanine dye on inhomogeneous island films [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 3. P. 3–9. http://doi.org/10.17586/1023-5086-2020-87-03-03-09
R. D. Nabiullina, A. A. Starovoytov, and I. A. Gladskikh, "Optical properties of J-aggregates of pseudoisocyanine dye on inhomogeneous island films," Journal of Optical Technology. 87(3), 137-141 (2020). https://doi.org/10.1364/JOT.87.000137
This study investigates the optical properties of the molecular layers of a pseudoisocyanine dye and its J-aggregates deposited on the surface of an Ag island film, which is an inhomogeneous ensemble of nanoparticles. Such a hybrid structure has an absorption that does not equal the sum of the inhomogeneously broadened plasmon resonance of nanoparticles and the absorption bands of molecular forms (e.g., monomers and aggregates) of the dye. At the maximum absorption and fluorescence of the J-aggregates, a spectral dip with two peaks on either side is observed. This is caused by the splitting of the hybrid state owing to the strong coupling of the plasmons of an inhomogeneous ensemble of nanoparticles with the excitons of the J-aggregates.
plasmon, exciton, nanoparticle, thin film, J-aggregate, absorption, luminescence
OCIS codes: 310.6188, 300.6490
References:1. G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
2. J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater. 6, 291–295 (2007).
3. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
4. F. Nan, S. Ding, L. Ma, Z. Cheng, Y. Zhong, Y. Zhang, Y. Qiu, X. Li, L. Zhou, and Q. Wang, “Plasmon resonance energy transfer and plexcitonic solar cell,” Nanoscale 8(32), 15071–15078 (2016).
5. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
6. H. A. Shindy, “Basics, mechanisms and properties in the chemistry of cyanine dyes: a review paper,” Mini-Rev. Org. Chem. 9(4), 352–360 (2012).
7. E. N. Kaliteevskaya, V. P. Krutyakova, T. K. Razumova, and A. A. Starovoytov, “Identification of absorption bands of monomers and aggregates in a layer of cyanine dye and determination of the orientation of molecules,” Opt. Spectrosc. 125, 425–432 (2018) [Opt. Spektrosk. 125(3), 411–418 (2018)].
8. P. M. Krasilnikov, D. V. Zlenko, and I. N. Stadnichuk, “Exciton interaction of the chromophores—a tool to fine-tune the mechanism of non-photochemical quenching of phycobilisome in cyanobacteria,” Komput. Issled. Model. 7(1), 125–144 (2015).
9. V. V. Shelkovnikov, A. I. Plekhanov, and N. A. Orlova, “Nanometer films of polymethine dyes in optical memory and nonlinear optics,” Ross. Nanotekhnol. 3(9–10), 35–57 (2008).
10. B. I. Shapiro, “Molecular ensembles of polymethine dyes,” Usp. Khim. 75(5), 433–510 (2006).
11. D. Melnikau, A. A. Govyadinov, A. Sanchez-Iglesias, M. Grzelczak, L. M. Liz-Marzán, and Y. P. Rakovich, “Strong magneto-optical response of nonmagnetic organic materials coupled to plasmonic nanostructures,” Nano Lett. 17(3), 1808–1813 (2017).
12. T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1(5), 454–463 (2014).
13. R. D. Nabiullina, A. A. Starovo˘ıtov, and N. A. Toropov, “Optical properties and photoinduced aggregation of cyanine dyes on silver island films,” J. Opt. Technol. 84(7), 453–458 (2017) [Opt. Zh. 84(7), 1–7 (2017)].
14. K. Das, B. Hazra, and M. Chandra, “Exploring the coherent interaction in a hybrid system of hollow gold nanoprisms and cyanine dye J-aggregates: role of plasmon-hybridization mediated local electricfield enhancement,” Phys. Chem. Chem. Phys. 19(41), 27997–28005 (2017).
15. D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light–matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
16. T. Simon, D. Melnikau, A. Sánchez-Iglesias, M. Grzelczak, L. M. Liz-Marzán, Y. Rakovich, J. Feldmann, and A. S. Urban, “Exploring the optical nonlinearities of plasmon–exciton hybrid resonances in coupled colloidal nanostructures,” J. Phys. Chem. C 120(22), 12226–12233 (2016).
17. J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6(1), 012001 (2017).
18. E. Kaliteevskaya, V. Krutyakova, T. Razumova, A. Roshal, and A. Starovoytov, “Optical properties and component composition of layers of cyanine dyes on dielectric supports: influence of asymmetry of the molecular electron density distribution,” Opt. Quantum Electron. 49(1), 32 (2017).
19. R. Steiger, R. Pugin, and J. Heier, “J-aggregation of cyanine dyes by self-assembly,” Colloids Surf. B 74(2), 484–491 (2009).
20. A. A. Starovoytov, R. D. Nabiullina, and N. A. Toropov, “Self-organization and photo-induced formation of cyanine dye aggregates on the plasmonic Ag nanoparticles,” Proc. SPIE 9884, 98843P (2016).
21. N. A. Toropov, P. S. Parfenov, and T. A. Vartanyan, “Aggregation of cyanine dye molecules in the near fields of plasmonic nanoparticles excited by pulsed laser irradiation,” J. Phys. Chem. C 118(31), 18010–18014 (2014).
22. S. Balci, “Ultrastrong plasmon–exciton coupling in metal nanoprisms with J-aggregates,” Opt. Lett. 38(21), 4498–4501 (2013).