ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-03-66-74

УДК: 535.212

Algorithms for automating the processing of measurement results when determining the threshold of laser-induced destruction

For Russian citation (Opticheskii Zhurnal):

Ахмадуллин Р.М., Беликов А.В., Гагарский С.В., Сергеев А.Н. Алгоритмы автоматизации обработки результатов измерений при определении порога лазерно-индуцированного разрушения // Оптический журнал. 2020. Т. 87. № 3. С. 66–74. http://doi.org/10.17586/1023-5086-2020-87-03-66-74

 

Akhmadullin R.M., Belikov A.V., Gagarskiy S.V., Sergeev A.N. Algorithms for automating the processing of measurement results when determining the threshold of laser-induced destruction [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 3. P. 66–74. http://doi.org/10.17586/1023-5086-2020-87-03-66-74

For citation (Journal of Optical Technology):

R. M. Akhmadullin, A. V. Belikov, S. V. Gagarskiy, and A. N. Sergeev, "Algorithms for automating the processing of measurement results when determining the threshold of laser-induced destruction," Journal of Optical Technology. 87(3), 182-188 (2020). https://doi.org/10.1364/JOT.87.000182

Abstract:

A study and comparison of three algorithms for an optical material image analysis aiming at a determination of the laser-induced damage threshold were conducted. The first algorithm is based on the image integral-representation principle. It makes it possible to compare the total brightness of the images containing a laser-damaged area and an undamaged background area. The second algorithm is based on a Canny edge detector with a subsequent damage contour perimeter calculation. It includes several image processing steps to enhance the image contrast and sharpness in the damaged area compared to the background. The third algorithm is based on a determination of the Minkowski dimension of the detected damage contour.

Keywords:

threshold of laser-induced destruction, image analysis, process automation, image integral representation, Canny edge detector, Minkowski dimension

OCIS codes: 140.3440, 100.2960, 120.1880

References:

1. W. Riede and P. Allenspacher, “Laser damage test bench for space optics,” Proc. SPIE 10568, 105681X (2017).
2. D. Ristau, I. Balasa, and L. Jensen, “Standardization in optics characterization,” Proc. SPIE 10805, 108050A (2018).
3. O. Neufeld and O. Cohen, “Optical chirality in nonlinear optics: application to high harmonic generation,” Phys. Rev. Lett. 120(1–3), 133206 (2018).
4. I. Divliansky, F. Kompan, E. Hale, M. Segall, A. Schulzgen, and L. B. Glebov, “Wavefront shaping optical elements recorded in photo-thermo-refractive glass,” Appl. Opt. 58(13), D61–D67 (2019).
5. E. Hale, I. Divliansky, F. Kompan, and L. Glebov, “High power laser mode conversion with volume phase elements recorded in PTR glass,” Proc. SPIE 10904, 109041H (2019).
6. A. Stratan, A. Zorila, L. Rusen, S. Simon, C. Blanaru, C. Fenic, L. Neagu, and G. Nemes, “Automated test station for laser-induced damage threshold measurements according to ISO 21254-1, 2, 3, 4 standards,” Proc. SPIE 8530, 85301Y (2012).
7. M. Hooker, “Laser-induced damage threshold and certification procedures for optical materials,” NASA Reference Publication 1395 (1997).
8. A. O. Mitin and V. I. Oreshkov, “Development and analysis of investigation methods of optical coating radiation durability,” Vestn. Ross. Gos. Tekhnol. Univ. 55, 172–177 (2016).
9. L. Ding and A. Goshtasby, “On the Canny edge detector,” Pattern Recognit. 34(5), 721–725 (2001).
10. S. V. Gagarsky, V. S. Ermolaev, A. N. Sergeev, and M. V. Puzyk, “Study of the radiation resistance of a dielectric coating deposited on an optical surface,” Izv. Vyssh. Uchebn. Zaved., Priborostr. 55(7), 80–85 (2012).
11. R. Gonzalez and R. Woods, Digital Image Processing (Tekhnosfera, Moscow, 2005).
12. P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2001).
13. P. Viola and M. Jones, “Robust real-time face detection,” Int. J. Comput. Vis. 57(2), 137–154 (2004).
14. A. L. Zhiznyakov and D. G. Privezentsev, “Analysis of the fractal method’s possible application in industrial image processing systems,” in Proceedings of the Third International Symposium on Reliability and Quality (2012), pp. 385–386.
15. V. E. Ovsyannikov and V. Y. Tereshchenko, “Analysis of the fractal dimensions of the glazed surface roughness profile,” Dokl. Tomsk. Gos. Univ. Sist. Upr. Radioelektron. 1(35), 142–147 (2015).
16. F. Grizzi, A. Castello, D. Qehajaj, C. Russo, and E. Lopci, “The complexity and fractal geometry of nuclear medicine images,” Mol. Imaging Biol. 21(6), 401–409 (2018).
17. V. A. Trenikhin and V. G. Kobernichenko, “Increasing the information content of radar images in remote sensing systems based on fractal processing methods,” Ural Radio Eng. J. 3(2), 111–131 (2019).
18. V. T. Prokopenko, N. V. Matveev, N. P. Sapunova, R. M. Akhmadullin, and F. S. Usmanova, “Method of estimating the visual complexity of dynamic images,” Izv. Vyssh. Uchebn. Zaved., Priborostr. 62(5), 433–441 (2019).
19. J. Feng, W. Lin, and C. Chen, “Fractional box-counting approach to fractal dimension estimation,” in Proceedings of 13th International Conference on Pattern Recognition (1996), pp. 854–858.

20. P. S. Aleksandrov and B. A. Pasygkov, Introduction to Dimension Theory: Introduction to Topological Space Theory and General Dimension Theory (Nauka, Moscow, 1973).
21. S. Dewra, V. Grover, and A. Grover, “Fabrication and applications of fiber Bragg grating—a review,” Adv. Eng. Technol. Appl. 4(2), 15–25 (2015).
22. L. Glebova, J. Lumeau, and L. B. Glebov, “Photo-thermo-refractive glass co-doped with Nd3+ as a new laser medium,” Opt. Mater. 33(12), 1970–1974 (2011).
23. L. Glebov, “High-performance solid-state and fiber lasers controlled by volume Bragg gratings,” Rev. Laser Eng. 41(1), 684–690 (2013).
24. N. V. Nikonorov, S. A. Ivanov, D. A. Kozlova, and I. S. Pichugin, “Effect of rare-earth-dopants on Bragg gratings recording in PTR glasses,” Proc. SPIE 10233, 102330P (2017).
25. F. Kompan, I. Divliansky, V. Smirnov, and L. B. Glebov, “Complex holographic elements in photo-thermo-refractive glass for the visible spectral region,” Proc. SPIE 10085, 100850P (2017).