ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-06-57-65

УДК: 681.78, 004.932

Image fusion in a dual-band scanning optoelectronic system for the search and detection of poaching activity

For Russian citation (Opticheskii Zhurnal):

Маркушин Г.Н., Коротаев В.В., Кошелев А.В., Самохина И.А., Васильев А.С., Васильева А.В., Ярышев С.Н. Комплексирование изображений в двухдиапазонной сканирующей оптико-электронной системе поиска и обнаружения браконьерского промысла // Оптический журнал. 2020. Т. 87. № 6. С. 57–65. http://doi.org/10.17586/1023-5086-2020-87-06-57-65

 

Markushin G.N., Korotaev V.V., Koshelev A.V., Samokhina I.A., Vasil’ev A.S., Vasil’eva A.V., Yaryshev S.N. Image fusion in a dual-band scanning optoelectronic system for the search and detection of poaching activity [in Russian] // Opticheskii Zhurnal. 2020. Т. 87. № 6. С. 5765. http://doi.org/10.17586/1023-5086-2020-87-06-57-65

 

 

For citation (Journal of Optical Technology):

G. N. Markushin, V. V. Korotaev, A. V. Koshelev, I. A. Samokhina, A. S. Vasil’ev, A. V. Vasil’eva, and S. N. Yaryshev, "Image fusion in a dual-band scanning optoelectronic system for the search and detection of poaching activity," Journal of Optical Technology. 87(6), 365-370 (2020).  https://doi.org/10.1364/JOT.87.000365

Abstract:

In this paper, a method for detecting poachers and poaching equipment using optoelectronic systems is proposed. A scheme for forming images in the video and thermal-imaging channels of an optoelectronic scanning system is also proposed. Furthermore, multi-aspect and multi-spectral image fusion methods are proposed to broaden the field of view and extend the spectral range of the system, respectively. The combination of these methods enables efficient detection of humans and vehicles on waterways and under tree cover. Finally, a structural schematic of the designed optoelectronic system, equations for image fusion, and results of the method are presented.

Keywords:

optical-electronic system, image integration, multi-spectral images, multi-angle images, scanning system

OCIS codes: 100.4145, 110.4234, 120.0280

References:

1. A. G. Shipunov, E. N. Semashkin, A. A. Chernousov, A. N. Gromov, A. R. Romanov, V. V. Vorob’ev, and A. Y. Matyushin, “Experimental studies of the operating range and all-weather capability of television and thermal-vision observation devices,” J. Opt. Technol. 74(9), 626–629 (2007).

2. Y. V. Nikitenko and K. B. Bobrikov, “Method of masking false objects in the infra-red band of wavelengths,” Nats. Prioritety Ross. Ser. 1: Nauka Voen. Bezop. (1), 17–21 (2016).

3. V. V. Tarasov and Y. G. Yakushenkov, Infrared Vision Systems (Logos, Moscow, 2004).

4. E. V. Sokolova, Aerospace Methods in Forestry and Landscape Construction (Novocherkasskaya Gosudarstvennaya Meliorativnaya Akademiya, Novocherkassk, 2008).

5. A. M. Volkov, Determination of Spectral Properties of Natural Objects at Field Testing Sites and Issues of Space System Efficiency (Gidrometizdat, Moscow, 1985).

6. V. L. Fillipova, V. P. Ivanova, and V. S. Yatsyk, Atmosphere and Modeling of Optoelectronic Systems in External Condition Dynamics (Izdatel’stvo Kazanskogo Universiteta, Kazan’, 2015).

7. M. M. Miroshnikov, Theoretical Basis for Optoelectronic Devices (Lan’, St. Petersburg, 2010).

8. B. V. Shilin and V. N. Gruzdev, “Applied problems of aerial thermal imaging,” J. Opt. Technol. 80(6), 363–367 (2013) [Opt. Zh. 80(6), 48–53 (2013)]

9. V. V. Tarasov and Y. G. Yakushenkov, Dual- and Multiband Optoelectronic Systems Based on Photodetector Arrays (Logos, Moscow, 2007).

10. A. S. Vasiliev, A. V. Krasnyaschikh, V. V. Korotaev, O. Lashmanov, D. Y. Lysenko, O. N. Nenarokomov, A. S. Shirokov, and S. N. Yaryshev, “Unmanned aerial vehicle computer system for wildfire detection by image superimposing,” Priborostroenie 55(12), 50–56 (2012).

11. G. S. Mel’nikov, V. M. Samkov, Y. I. Soldatov, N. A. Klisho, E. L. Pankov, and V. V. Korotaev, “Super-resolution regime implementation in complexing terahertz and infrared ranges using QWIP-arrays,” Priborostroenie 51(9), 47–54 (2008).

12. A. I. Altuhov, E. I. Shabakov, and D. S. Korshunov, “Increased image quality by synthesizing space photos with different exposures,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. 17(1), 24–30 (2017).

13. V. A. Ovsyannikov, Y. V. Ovsyannikov, and V. L. Fillipov, “Efficiency estimation of multi-spectral image complexing,” Oboronnaya Tekh. (6–7), 46–54 (2010).

14. H. B. Mitchell, Image Fusion: Theories, Techniques, and Applications (Springer Science & Business Media, Berlin, 2010).

15. A. S. Vasilev and V. V. Korotaev, “Research of the fusion methods of the multi-spectral optoelectronic systems images,” Proc. SPIE 9530, 953007 (2015).

16. V. A. Vo˘ıtov, A. V. Golitsyn, P. V. Zhuravlev, G. E. Zhurov, E. V. Degtyarev, and V. B. Shlishevski˘ı, “Method of forming a unified information field in an observational device,” J. Opt. Technol. 76(12), 799–801 (2009) [Opt. Zh. 76(12), 84–87 (2009)]

17. V. G. Andronov, S. V. Degtyarev, and E. V. Lazareva, “Model of formation of space scanner images in panoramic survey modes,” Inf.-Izmer. Upr. Sist. 8(11), 19–25 (2010).

18. V. K. Zlobin and V. V. Eremeev, Aerospace Image Processing (Fizmatlit, Moscow, 2006).

19. B. V. Martem’yanov, “Assessment of the quality of the image stitching algorithm based on the functionalization method,” Vestn. Samar. Gos. Tekh. Univ. Ser. Tekh. Nauki 3(25), 88–94 (2009).

20. D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the International Conference on Computer Vision (1999), pp. 1150–1157.

21. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded up robust features (SURF),” Comput. Vision Image Understanding 110, 346–359 (2008).

22. M. Calonder, V. Lepetit, C. Strecha, and P. Fu, “BRIEF: binary robust independent elementary features,” in European Conference on Computer Vision, Berlin, 2010, pp. 778–792.

23. C. Harris and M. Stephens, “A combined corner and edge detector,” in Proceedings of the Alvey Vision Conference (1988), pp. 147–151.

24. R. Gonzalez and R. Woods, Digital Image Processing (Tekhnosfera, Moscow, 2012).

25. senseFly Datasets, https://www.sensefly.com/education/datasets/.

26. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vision 60(2), 91–110 (2004).

27. M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM 24(6), 381–395 (1981).

28. A. S. Potapov, “How mutual geometrical distortions affect the possibility of spatially combining images by the local-correlation method,” J. Opt. Technol. 71(8), 555–560 (2004) [Opt. Zh. 71(8), 74–80 (2004)].

29. Z. Liu and R. Laganière, “Context enhancement through infrared vision: a modified fusion scheme,” Signal Image Video Process. 1(4), 293–301 (2007).