ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-06-76-88

УДК: 535.8

Using the RGB data of bright-field optical microscopy to efficiently monitor the surface cleanliness of the active elements of semiconductor wafers in the planar production cycle

For Russian citation (Opticheskii Zhurnal):
Козырев А.А., Гордеева М.В., Бурцев Д.Н., Елисеева Ю.А. Использование RGB данных оптической светлопольной микроскопии для оперативного контроля чистоты поверхности активных элементов полупроводниковых пластин в производственном планарном цикле // Оптический журнал. 2020. Т. 87. № 6. С. 76–88. http://doi.org/10.17586/1023-5086-2020-87-06-76-88   Kozyrev A.A., Goreeva M.V., Burtsev D.N., Eliseeva Yu.A. Using the RGB data of bright-field optical microscopy to efficiently monitor the surface cleanliness of the active elements of semiconductor wafers in the planar production cycle [in Russian] // Opticheskii Zhurnal. 2020. Т. 87. № 6. С. 76–88. http://doi.org/10.17586/1023-5086-2020-87-06-76-88
For citation (Journal of Optical Technology):

A. A. Kozyrev, M. V. Goreeva, D. N. Burtsev, and Yu. A. Eliseeva, "Using the RGB data of bright-field optical microscopy to efficiently monitor the surface cleanliness of the active elements of semiconductor wafers in the planar production cycle," Journal of Optical Technology. 87(6), 379-388 (2020).  https://doi.org/10.1364/JOT.87.000379

Abstract:

It is shown that it is promising to use the RGB data of bright-field optical microscopy to efficiently monitor the surface cleanliness of the active elements of semiconductor wafers in the planar production cycle. It is demonstrated that the film thickness on a substrate surface can be determined from RGB data obtained by means of a photosensor based on a Bayer array with known spectral response. An example shows how to use it on a GaAs semiconductor wafer with metallized active gold elements. Software has been developed for channel-by-channel comparison of a discriminated region of two pictures. An algorithm is presented for obtaining micrographs that can subsequently be analyzed and compared.

Keywords:

RGB, optical microscopy, digital image processing, thin films, thickness measurement

OCIS codes: 100.2000

References:

1. A. G. Gladyshev, M. M. Kulagina, S. A. Blokhin, A. A. Krasivichev, L. Ya. Karachinskii, A. P. Vasil’ev, N. A. Maleev, and V. M. Ustinov, “Submicron surface relief fabrication technology for epitaxial GaAs structures with thin AlGaAs stop layers,” Tech. Phys. Lett. 37(12), 1145–1148 (2011) [Pis’ma Zh. Tekh. Fiz. 37(24), 9–15 (2011)].

2. Z. Qiao, X. Tang, X. Li, B. Bo, X. Gao, Y. Qu, C. Liu, and H. Wang, “Monolithic fabrication of InGaAs/GaAs/AlGaAs multiple wavelength quantum well laser diodes via impurity-free vacancy disordering quantum well intermixing,” IEEE J. Electron Devices Soc. 5(2), 122–127 (2017).

3. G. Erbert, A. Bärwolff, J. Sebastian, and J. Tomm, “High-power broad-area diode lasers and laser bars,” in High-Power Diode Lasers: Topics Applied Physics (Springer, 2000), Vol. 78, pp. 173–223.

4. I. Newton, Opticks: a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light (Royal Society, London, 1718), pp. 168–206.

5. A. A. D’yachenko and V. P. Ryabukho, “Determining the optical thicknesses of layered objects from the interference colors of images in white-light microscopy,” Komp’yutern. Opt. 41(5), 670–679 (2017).

6. W. Ouyang, X.-Z. Liu, Q. Li, Y. Zhang, J. Yang, and Q.-S. Zheng, “Optical methods for determining thicknesses of few-layer graphene flakes,” Nanotechnology 24(50), 505701 (2013).

7. H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, and H. Zhang, “Rapid and reliable thickness identification of twodimensional nanosheets using optical microscopy,” ACS Nano 7(11), 10344–10353 (2013).

8. Y. Kobayashi, T. Morimoto, I. Sato, Y. Mukaigawa, T. Tomono, and K. Ikeuchi, “Reconstructing shapes and appearances of thin-film objects using RGB images,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, 2016, pp. 3774–3782.

9. E. Goto, M. Dogru, T. Kojima, and K. Tsubota, “Computer-synthesis of an interference color chart of human tear lipid layer by a colorimetric approach,” Invest. Ophthalmol. Visual Sci. 44, 4693–4697 (2003).

10. P. Cheremkhin, V. Lesnichii, and N. Petrov, “Use of spectral characteristics of DSLR cameras with Bayer filter sensors,” J. Phys.: Conf. Ser. 536, 012021 (2014).

11. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing, London, 2001).

12. D. Yakubovsky, A. Arsenin, Y. Stebunov, D. Yu. Fedyanin, and V. S. Volkov, “Optical constants and structural properties of thin gold films,” Opt. Express 25, 25574–25587 (2017).