ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-06-09-17

Generation of high-quality non-diffracting beams using spatial filtering

For Russian citation (Opticheskii Zhurnal):

Zhang Ying, Ke Fan, Jianzhong Luo, Wei Yan. Генерация высококачественных недифрагирующих пучков с использованием пространственной фильтрации // Оптический журнал. 2020. Т. 87. № 6. С. 9–17. http://doi.org/10.17586/1023-5086-2020-87-06-09-17

 

Zhang Ying, Ke Fan, Jianzhong Luo, Wei Yan. Generation of high-quality non-diffracting beams using spatial filtering [in English] // Opticheskii Zhurnal. 2020. V. 87. № 6. P. 917. http://doi.org/10.17586/1023-5086-2020-87-06-09-17

 

For citation (Journal of Optical Technology):

Ying Zhang, Ke Fan, Jianzhong Lou, and Yan Wei, "Generation of high-quality non-diffracting beams using spatial filtering," Journal of Optical Technology . 87(6), 331-337 (2020) https://doi.org/10.1364/JOT.87.000331

Abstract:

Annular spatial filtering is a widely used technique for the generation of non-diffracting beams. Combined with a phase modulator, this setup can generate arbitrary non-diffracting beams with high power efficiency. Previously, researchers have mainly focused on the generation of a specific type of beam (Bessel, Weber). In this study, a method to obtain the optimal setup parameters for general non-diffracting beams was introduced. To achieve the balance of efficiency and beam quality, appropriate sampling numbers and annular ring size were determined. A simulation, derived from the Fourier optics model, was developed to estimate the optimal parameters. The selected ring width predicted by the simulation was then verified using experimental results. This investigation develops a strategy to improve the quality of various non-diffracting beams in more general applications.

Keywords:

non-diffracting beams, high-quality, spatial filtering

OCIS codes: 260.0260

References:

1.    Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory // Journal of The Optical Society of America A-optics Image Science and Vision. 1987. V. 4. No 4. P. 651–654.

2.   Fleischer J.W., Segev M., Efremidis N.K., Christodoulides D.N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices // Nature. 2003. V. 422. No 6928. P. 147–150.

3.   Garceschavez V., Mcgloin D., Melville H., Sibbett W., Dholakia K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam // Nature. 2002. V. 419. No 6903. P. 145–147.

4.   Zhou Q., Yang W., He F., Stoian R., Hui R., Cheng G. Femtosecond multi-beam interference lithography based on dynamic wavefront engineering // Optics Express. 2013. V. 21. No 8. P. 9851–9861.

5.   Bouchal Z. Nondiffracting optical beams: physical properties, experiments, and applications // Czechoslovak Journal of Physics. 2003. V. 53. No 7. P. 537–578.

6.   Boguslawski M., Rose P., Denz C. Increasing the structural variety of discrete nondiffracting wave fields // Physical Review A. 2011. V. 84. No 1. P. 013832.

7.    Scott G., Mcardle N. Efficient generation of nearly diffraction-free beams using an axicon // Optical Engineering. 1992. V. 31. No 12. P. 2640–2643.

8.   Alpmann C., Bowman R., Woerdemann M., Padgett M.J., Denz C. Mathieu beams as versatile light moulds for 3D micro particle assemblies // Optics Express. 2010. V. 18. No 25. P. 26084–26091.

9.   Bandres M.A., Gutierrezvega J.C., Chavezcerda S. Parabolic nondiffracting optical wave fields // Optics Letters. 2004. V. 29. No 1. P. 44–46.

10. Overfelt P.L., Kenney C.S. Comparison of the propagation characteristics of Bessel, Bessel–Gauss, and Gaussian beams diffracted by a circular aperture // Journal of The Optical Society of America A-optics Image Science and Vision. 1991. V. 8. No 5. P. 732–745.

11.  Durnin J., Miceli J.J., Eberly J.H. Diffraction-free beams // Physical Review Letters. 1987. V. 58. No 15. P. 1499–1501.

12.  Wang Y., Qu W., Jiao L., Zhang Y. Generation and control of Bessel beams based on annular reflections // Applied Physics B. 2015. V. 119. No 2. P. 241–245.

13.  Turunen J., Vasara A., Friberg A.T. Propagation invariance and self-imaging in variable-coherence optics // Journal of The Optical Society of America A-optics Image Science and Vision. 1991. V. 8. No 2. P. 282–289.

14.  Vasilyeu R., Dudley A., Khilo N.A., Forbes A. Generating superpositions of higher order Bessel beams // Optics Express. 2009. V. 17. No 26. P. 23389–23395.

15.  James D., Joseph E. Diffraction free arrangement // United States Patent No. 4887885. 1989.

16.  Vasara A., Turunen J., Friberg A.T. Realization of general nondiffracting beams with computer-generated holograms // Journal of The Optical Society of America A-optics Image Science and Vision. 1989. V. 6. No 11. P. 1748–1754.

17.  Mcleod J.H. The axicon: a new type of optical element // Journal of the Optical Society of America. 1954. V. 44. No 8. P. 592–597.

18. Indebetouw G. Nondiffracting optical fields: some remarks on their analysis and synthesis // Journal of The Optical Society of America A-optics Image Science and Vision. 1989. V. 6. No 1. P. 150–152.

19.  Arlt J., Dholakia K. Generation of high-order Bessel beams by use of an axicon // Optics Communications. 2000. V. 177. No 1. P. 297–301.

20. Davis J.A., Carcole E., Cottrell D.M. Nondiffracting interference patterns generated with programmable spatial light modulators // Applied Optics. 1996. V. 35. No 4. P. 599–602.

21.  Chattrapiban N., Rogers E.A., Cofield D., Hill W.T., Roy R. Generation of nondiffracting Bessel beams by use of a spatial light modulator // Optics Letters. 2003. V. 28. No 22. P. 2183–2185.

22. Bowman R., Muller N., Zambranapuyalto X., Jedrkiewicz O., Trapani P.D., Padgett M.J. Efficient generation of Bessel beam arrays by means of an SLM // European Physical Journal – special Topics. 2011. V. 199. No 1. P. 159–166.

23. Shen T., Lang T., Wu M., Han Z. Bessel-like beam generated by an axicon based on parallel-plate waveguides // Applied Optics. 2018. V. 57. No 21. P. 6174–6180.

24. Gong L., Ren Y., Xue G., Wang Q., Zhou J., Zhong M., Wang Z., Li Y. Generation of nondiffracting Bessel beam using digital micromirror device // Applied Optics. 2013. V. 52. No 19. P. 4566–4575.

25. Yu X., Todi A., Tang H. Bessel beam generation using a segmented deformable mirror // Applied Optics. 2018. V. 57. No 16. P. 4677–4682.

26. Cottrell D.M., Craven J.M., Davis J.A. Nondiffracting random intensity patterns // Optics Letters. 2007. V. 32. No 3. P. 298–300.

27. Hernandezhernandez R.J., Terborg R.A., Ricardezvargas I., Volkesepulveda K. Experimental generation of Mathieu–Gauss beams with a phase-only spatial light modulator // Applied Optics. 2010. V. 49. No 36. P. 6903–6909.

28. Arrizon V., Sanchezdelallave D., Ruiz U., Mendez G. Efficient generation of an arbitrary nondiffracting Bessel beam employing its phase modulation // Optics Letters. 2009. V. 34. No 9. P. 1456–1458.

29. Mahmoud M., Shalaby M., Khalil D. Propagation of Bessel beams generated using finite-width Durnin ring // Applied Optics. 2013. V. 52. No 2. P. 256–263.

30. Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: from error visibility to structural similarity // IEEE Trans Image Process. 2004. V. 13. No 4. P. 600–612.

31.       Liu W., Gao J., Yang X. Optical transportation of micro-particles by non-diffracting Weber beams // Journal of Optics. 2018. V. 20. No 12. P. 125401.