DOI: 10.17586/1023-5086-2020-87-08-41-49
УДК: 535.317 681.7.012
Optical projection system with a telecentric ray path for on-board aviation displays
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Гаршин А.С., Шукалов А.В., Москаленко А.А. Проекционная оптическая система с телецентрическим ходом лучей для авиационных бортовых индикаторов // Оптический журнал. 2020. Т. 87. № 8. С. 41–49. http://doi.org/10.17586/1023-5086-2020-87-08-41-49
Garshin A.S., Shukalov A.V., Moskalenko A.A. Optical projection system with a telecentric ray path for on-board aviation displays [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 8. P. 41–49. http://doi.org/10.17586/1023-5086-2020-87-08-41-49
A. S. Garshin, A. V. Shukalov, and A. A. Moskalenko, "Optical projection system with a telecentric ray path for on-board aviation displays," Journal of Optical Technology. 87(8), 479-484 (2020). https://doi.org/10.1364/JOT.87.000479
In this paper, we discuss the design principles of an optical projection system that is compatible with a liquid-crystal display. We describe a procedure for synthesis of a complex optical system using conceptual design and third-order aberration theory. The resulting optical system design has high image quality over the entire field, low distortion, and high telecentricity, enabling liquid-crystal displays to replace cathode-ray tubes in modern on-board aviation displays.
calculation of optical systems, telecentric ray travel, collimator aviation indicator, synthesis of optical systems, composition method, third-order aberration theory
OCIS codes: 220.1000, 220.2740, 220.3620, 080.2740, 080.3620, 120.2040, 120.2820, 120.3620, 230.5480, 35.6830
References:1. J. A. Betancur, G. Osorio-Gomez, and J. D. Agudelo, “Head-up and head-down displays integration in automobiles,” Proc. SPIE 9086,
90860S (2014).
2. M. K. Hedili, M. O. Freeman, and H. Urey, “Microstructured headup display screen for automotive applications,” Proc. SPIE 8428, 84280X (2012).
3. B. Irving, D. Hasenauer, and S. Mulder, “Multi-tool design and analysis of an automotive HUD,” Proc. SPIE 10021, 100210F (2017).
4. A. L. Kucheryavy˘ı, On-Board Data Systems (UlGTU, Ul’yanovsk, 2004).
5. A. A. Bagdasarov, R. V. Anitropov, O. V. Bagdasarova, and I. L. Livshits, “Systems for the indication and display of secondary information in avionics and autobasing complexes,” Russ. Aeronaut. 54, 185 (2011) [Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh. (2), 48–52 (2011)].
6. G. E. Romanova, A. S. Garshin, A. V. Bakholdin, V. N. Vasilyev, and A. V. Shukalov, “Analysis and composing principles for HMD optics based on FLCOS and AMOLED,” Proc. SPIE 10690, 106901Y (2018).
7. L. A. Zapryagaeva and I. S. Sveshnikova, Design and Calculation of Optical Systems (Logos, Moscow, 2000).
8. G. G. Slyusarev, Optical System Design Methods (Mashinostroenie, Moscow, 1969).
9. M. M. Rusinov, Design of Optical Systems (Mashinostroenie, Leningrad, 1989).
10. A. P. Grammatin, Optical System Synthesis Methods (SPb GITMO (TU), St. Petersburg, 2002).
11. V. N. Churilovski˘ı, Theory of Chromatism and Third-Order Aberrations (Mashinostroenie, Leningrad, 1968).