DOI: 10.17586/1023-5086-2021-88-01-44-52
УДК: 535.421, 535-45, 532.738
Diffraction gratings made from optically anisotropic material with surface microrelief
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Беляев В.В., Соломатин А.С., Kumar S., Чаусов Д.Н., Беляев А.А., Маргарян А.Л., Акопян Н.Г. Дифракционные решетки с поверхностным микрорельефом из оптически анизотропного материала // Оптический журнал. 2021. Т. 88. № 1. С. 44–52. http://doi.org/10.17586/1023-5086-2021-88-01-44-52
Belyaev V.V., Solomatin A.S., Kumar S., Chausov D.N., Belyaev A.A., Margaryan A.L., Akopiyan N.G. Diffraction gratings made from optically anisotropic material with surface microrelief [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 1. P. 44–52. http://doi.org/10.17586/1023-5086-2021-88-01-44-52
V. V. Belyaev, A. S. Solomatin, S. Kumar, D. N. Chausov, A. A. Belyaev, A. L. Margaryan, and N. G. Akopyan, "Diffraction gratings made from optically anisotropic material with surface microrelief," Journal of Optical Technology. 88(1), 30-36 (2021). https://doi.org/10.1364/JOT.88.000030
The diffraction of polarized light transmitted through an optically anisotropic substrate with surface microrelief is calculated using the Exedeep program (optically anisotropic lattices with surface microrelief). The diffraction parameters are determined in different diffraction orders of transmitted and reflected TE and TM waves for materials with both positive and negative optical anisotropy. Such materials can be low- and high-molecular-weight calamitic and discotic liquid crystals. The results of modeling are used to create diffraction optical elements that operate in the visible, IR, and terahertz ranges.
diffraction, birefringence, microrelief, TE and TM waves
OCIS codes: 050.1970
References:1. N. K. Pavlycheva, Spectral Devices with Nonclassical Diffraction Gratings (Izd. Kazan. Gos. Tekhn. Univ., Kazan’, 2003).
2. A. A. Ezerskaya, D. V. Ivanov, V. G. Bespalov, and S. A. Kozlov, “Diffraction of single-period terahertz electromagnetic waves,” J. Opt. Technol. 78(8), 551–557 (2011) [Opt. Zh. 78(8), 109–117 (2011)].
3. É. R. Muslimov, A. A. Belokopytov, F. A. Sattarov, and K. S. Korenno˘ı, “Setup for recording a variable-line-spacing diffraction grating for the far-UV region,” J. Opt. Technol. 84(3), 190–194 (2017) [Opt. Zh. 84(3), 41–46 (2017)].
4. P. A. Nikitin, “Backward collinear acousto-optic diffraction of quasimonochromatic radiation,” J. Opt. Technol. 86(3), 133–136 (2019) [Opt. Zh. 86(3), 8–12 (2019)].
5. P. Ya. Vasil’ev, N. V. Kamanina, V. P. Savinov, S. V. Serov, and V. I. Studenov, “Diffraction responses of organic systems with nanoobjects,” http://www.nanometer.ru/2009/09/10/organicheskie_plenki_s_fullerenami_i_nanotrubkami_vzaimodejstvie_izluchenia_s_veshestvom_difrakcionnie_otkliki_156795.html.
6. N. V. Kamanina, Yu. A. Zubtsova, N. A. Shurpo, S. V. Serov, A. A. Kukharchick, and P. V. Kuzhakov, “Structural, spectral, and photorefractive properties of nano- and biostructured organic materials, including liquid crystals,” Zhidk. Krist. Ikh Prakt. Ispol’z. 14(1), 5–12 (2014).
7. N. V. Kamanina and N. A. Vasilenko, “Liquid-crystal spatial-temporal light modulator based on fullerene-containing polyimide for holographic recording of information,” Russian patent No. 2184988 (2002).
8. A. L. Margaryan, V. K. Abramyan, D. L. Oganesyan, N. G. Akopyan, V. M. Harutyunyan, V. V. Belyaev, and A. S. Solomatin, “The recording of geometrical phase elements based on liquid-crystal polymers,” Izv.- Nats. Akad. Nauk Arm., Fiz. 52(3), 353–360 (2017).
9. A. L. Margaryan, V. K. Abramyan, N. G. Akopyan, V. M. Harutyunyan, P. K. Gasparyan, V. V. Belyaev, A. S. Solomatin, and D. N. Chausov, “Method of optical recording of ordered microstructures based on a liquid-crystal polymer,” Izv.-Nats. Akad. Nauk Arm., Fiz. 54(1), 36–43 (2019).
10. O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular azobenzene-based materials for optical generation of microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
11. L. M. Goldenberg, V. Lisinetskii, and S. Schrader, “Stable lasing in azobenzene polyelectrolyte with polarization gratings as distributed feedback,” Adv. Opt. Mater. 1(10), 768–775 (2013).
12. L. M. Goldenberg, V. Lisinetskii, and S. Schrader, “Fast and simple fabrication of organic Bragg mirrors—application to plastic microchip lasers,” Laser Phys. Lett. 10(5), 055808 (2013).
13. V. Belyaev, A. Solomatin, and D. Chausov, “Phase retardation vs. pretilt angle in liquid crystal cells with homogeneous and inhomogeneous LC director configuration,” Opt. Express 21, 4244–4249 (2013).
14. V. Belyaev, A. Solomatin, and D. Chausov, “Measurement of the liquid crystal pretilt angle in cells with homogeneous and inhomogeneous LC director configuration,” Appl. Opt. 52(13), 3012–3019 (2013).
15. V. V. Belyaev and G. S. Chilaya, Liquid Crystals at the Beginning of the Twenty-First Century (IIU MGOU, Moscow, 2017).
16. V. V. Belyaev, “Liquid crystal displays. The technology now and in the future. Part 1. From pixel to flexible substrate,” Elektron. Nauka, Tekhnol., Biznes 8(148), 36–47 (2015).
17. Z. Zhang, H. Yang, B. Robertson, M. Redmond, M. Pivnenko, N. Collings, W. A. Crossland, and D. Chu, “Diffraction-based phase compensation method for phase-only liquid crystal on silicon devices in operation,” Appl. Opt. 51(17), 3837–3846 (2012).
18. M. Robinson, G. Woodgate, and J. Harrold, “Intelligent backlight: a controllable illumination system for high efficiency and sunlight readable mobile displays,” Dig. Tech. Pap. Soc. Inf. Disp. Int. Symp. 45(1), 842–845 (2014).
19. A. Gowda and S. Kumar, “Recent advances in discotic liquid crystal-assisted nanoparticles,” Materials 11(3), 382 (2018).
20. A. Yuvaraj, A. Renjith, and S. Kumar, “Novel electron-deficient phenanthridine based discotic liquid crystals,” J. Mol. Liq. 272, 583–589 (2018).
21. V. Tsoy, V. Belyaev, and A. Tarasishin, “Simulation of light propagation through birefringent substrates with periodical surface microrelief,” Opt. Commun. 246(1–3), 57–66 (2005).
22. V. I. Tso, A. V. Tarasishin, V. V. Belyaev, and S. M. Trofimov, “Modelling the diffraction of light by structures with spatial periodicity of the optical parameters of the substance and of the surface relief,” J. Opt. Technol. 70(7), 465–469 (2003) [Opt. Zh. 70(7), 18–23 (2003)].
23. V. V. Belyaev, V. I. Tsoy, E. M. Kushnir, A. V. Klyckov, and A. Y. Kalashnikov, “Polarized light diffraction on anisotropic substrates with rectangular and sine microrelief,” J. Soc. Inf. Disp. 13(4), 305–308 (2005).
24. K. Rokushima and J. Yamakita, “Analysis of anisotropic dielectric gratings,” J. Opt. Soc. Am. 73(7), 901–908 (1983).
25. E. Glytsis and T. Gaylord, “Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction,” J. Opt. Soc. Am. A 7(8), 1399–1420 (1990).
26. E. N. Glytsis and T. K. Gaylord, “Rigorous 3-D coupled-wave diffraction analysis of multiple superposed gratings in anisotropic media,” Appl. Opt. 28(12), 2401–2421 (1989).
27. J. M. Jarem and P. P. Banerjee, Computational Methods for Electromagnetic and Optical Systems (CRC Press, Boca Raton, Florida, 2017).
28. E. Popov, Gratings: Theory and Numeric Applications (Institut Fresnel, AMU, Marseille, 2014).
29. V. A. Soifer, Computer Design of Diffractive Optics (Woodhead Publishing, Witney, Oxford, 2012).
30. V. A. Sofer, ed., Methods of Computer Optics (Fizmatlit, Moscow, 2003).
31. A. A. Khokhlov, “Modeling the diffraction of polarized light on multi-layer thin-film coatings,” Candidate’s dissertation (RUDN, Moscow, 2011).
32. K. P. Lovetski and A. A. Khokhlov, “Modeling the interaction of an optical-range electromagnetic wave with an anisotropic layer,” Vestn. Ross. Univ. Druzhby Nar. Ser. Mat. Inf. Fiz. (1), 93–100 (2010).
33. Grating Solver Development Company, https://www.gsolver.com/products/index.html.
34. N. Tabiryan, H. Xianyu, D. Roberts, Z. Liao, D. Steeves, B. Kimball, E. Serabyn, and D. Mawet, “4G optics for communication and astronomy,” in 2016 IEEE Aerospace Conference, Big Sky, Montana, 2016.
35. N. Tabiryan, D. Roberts, E. Serabyn, D. Steeves, and B. Kimball, “Superlens in the skies: liquid-crystal-polymer technology for telescopes,” in SPIE Newsroom (2016), https://spie.org/news/6317-superlens-in-the-skies-liquid-crystal-polymer-technology-for-telescopes?SSO=1.
36. H. Chen, G. Tan, Y. Huang, Y. Weng, T.-H. Choi, T.-H. Yoon, and S.-T. Wu, “A low-voltage liquid-crystal phase grating with switchable diffraction angles,” Sci. Rep. 7, 39923 (2017).
37. V. Belyaev, L. Chistovskaya, V. Konovalov, A. Muravsky, A. Tarasishin, S. Trofimov, V. Tsoy, A. Volynsky, and S. Yakovenko, “Physical properties of stretched polymeric substrates with periodic microrelief for optical diffraction elements and liquid crystals alignment,” J. Soc. Inf. Disp. 11(1), 3–10 (2003).
38. V. V. Belyaev, K. V. Savtsov, S. V. Moseenko, A. A. Gorbunov, I. V. Popov, A. L. Volynsky, L. M. Yarysheva, K. A. Pupkov, A. L. Margaryan, A. S. Solomatin, and N. A. Bunkina, “Automatic system for measuring diffraction parameters on polymer films with periodic microrelief, “Vestn. Ross. Univ. Druzhby Nar. Ser. Inzh. Issled. (3), 55–64 (2015).
39. L. M. Goldenberg, O. Kulikovska, and J. Stumpe, “Thermally stable holographic surface relief gratings and switchable optical anisotropy in films of an azobenzene-containing polyelectrolyte,” Langmuir 21(11), 4794–4796 (2005).
40. O. Sakhno, L. M. Goldenberg, M. Wegener, and J. Stumpe, “Deep surface-relief grating in azobenzene-containing materials using a low-intensity 532-nm laser,” Opt. Mater. X 1, 100006 (2019).
41. V. Belyaev, V. M. Novikovich, and P. L. Denisenko, “Diffraction on birefringent elements with sine surface microrelief,” J. Soc. Inf. Disp. 16(9), 961–967 (2008).
42. A. Y. Merkulov, V. V. Belyaev, A. A. Belyaev, and A. A. Gorbunov, “Diffraction on anisotropic substrates with sinusoidal surface microrelief,” Mol. Cryst. Liq. Cryst. 596(1), 122–127 (2014).