DOI: 10.17586/1023-5086-2021-88-10-59-64
УДК: 535.37
Sensitized fluorescence and superluminescence of a dye in a functional chitosan–gelatin matrix
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Лантух Ю.Д., Летута С.Н., Алиджанов Э.К. Сенсибилизированная флуоресценция и суперлюминесценция красителя в функциональной хитозан-желатиновой матрице // Оптический журнал. 2021. Т. 88. № 10. С. 59–64. http://doi.org/10.17586/1023-5086-2021-88-10-59-64
Lantukh Yu.D., Letuta S.N., Alidzhanov E.K. Sensitized fluorescence and superluminescence of a dye in a functional chitosan–gelatin matrix [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 10. P. 59–64. http://doi.org/10.17586/1023-5086-2021-88-10-59-64
Yu. D. Lantukh, S. N. Letuta, and E. K. Alidzhanov, "Sensitized fluorescence and superluminescence of a dye in a functional chitosan–gelatin matrix," Journal of Optical Technology. 88(10), 593-596 (2021). https://doi.org/10.1364/JOT.88.000593
A method for the formation of a functional biopolymer matrix based on specific mixing of chitosan and gelatin is proposed. It makes it possible to obtain the binding complexes of organic dyes such as eosin (energy donor) and rhodamine C (acceptor) with chitosan that are advantageous for the realization of inductive-resonant electron excitation energy transfer between these dyes. An efficient sensitized steady-state fluorescence of rhodamine C and superluminescence of this dye under pulsed excitation were observed in this system. The obtained results can be used for the development of two-component solid-state dye lasers.
chitosan, gelatin, biopolymer complexes, dye-polymer complexes, rhodamine C, eosin, inductive-resonant energy transfer, sensitized fluorescence, superluminescence
Acknowledgements:The research was supported by the Ministry of Education and Science of the Russian Federation, project No. FSGU-2020-0003.
OCIS codes: 300.2530; 250.2080
References:1. K. G. Skryabin, S. N. Mikhailova, and V. P. Varlamova, Chitosan (Tsentr “Bioinzheneriya” RAN, Moscow, 2013).
2. S. Calixto, N. Ganzherli, S. Gulyaev, and S. Figueroa-Gerstenmaier, “Gelatin as a photosensitive material,” Molecules 23(8), 2064 (2018).
3. V. A. Izumrudov, I. F. Volkova, E. S. Grigoryan, and M. Y. Gorshkova, “Water-soluble nonstoichiometric polyelectrolyte complexes of modified chitosan,” Polym. Sci. Ser. A 53(4), 281–288 (2011).
4. Y. D. Lantukh, S. N. Letuta, S. N. Pashkevich, E. K. Alidjanov, and G. A. Tikhonov, “Highly efficient emitter based on gelatin films with a modified structure,” J. Opt. Technol. 86(9), 582–586 (2019) [Opt. Zh. 86(9), 63–67 (2019)].
5. Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U. S. A. 107(37), 16039–16042 (2010).
6. L. V. Levshin and A. M. Saletskii, Lasers Based on Complex Organic Compounds (MGU, Moscow, 1992).
7. Yu. D. Lantukh, S. N. Pashkevich, S. N. Letuta, E. K. Alidzhanov, and A. A. Kul’sarin, “Spectroscopic properties of DNA-acridine orange biopolymer films,” Opt. Spectrosc. 110(6), 880–884 (2011) [Opt. Spektrosk. 110(6), 932–937].
8. Kh. El-Nagar, M. Amer, M. Mekawy, and E. El Din Mahmoud, “Development of viscosity transfer standards from chitosan/gelatin mixtures,” MAPAN 25(4), 251–257 (2010).
9. N. Voron’ko, S. Derkach, Yu. Kuchina, and N. I. Sokolan, “The chitosan-gelatin (bio)polyelectrolyte complexes formation in an acidic medium,” Carbohydr. Polym. 138, 265–272 (2016).
10. L. N. Deryugin, O. I. Ovcharenko, V. E. Sotin, and T. K. Chekhlova, “Thin-film rhodamine 6G waveguide laser with a corrugated substrate,” Sov. J. Quantum Electron. 5(9), 1129–1130 (1975).
11. Yu. D. Lantukh and S. N. Pashkevich, “Superluminescence in DNA-dye film structures,” Vestn. Orenb. Gos. Univ. (12), 113–116 (2012).