DOI: 10.17586/1023-5086-2021-88-11-56-65
УДК: 681.786, 004.94, 53.088
Modeling a broad-band single-coordinate autocollimator with an extended mark and a detector in the form of a linear-array camera
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ловчий И.Л. Моделирование широкодиапазонного однокоординатного автоколлиматора с протяженной маркой и приемником в виде линейки фоточувствительных элементов // Оптический журнал. 2021. Т. 88. № 11. С. 56–65. http://doi.org/10.17586/1023-5086-2021-88-11-56-65
Lovchiy I.L. Modeling a broad-band single-coordinate autocollimator with an extended mark and a detector in the form of a linear-array camera [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 11. P. 56–65. http://doi.org/10.17586/1023-5086-2021-88-11-56-65
I. L. Lovchy, "Modeling a broad-band single-coordinate autocollimator with an extended mark and a detector in the form of a linear-array camera," Journal of Optical Technology. 88(11), 654-660 (2021). https://doi.org/10.1364/JOT.88.000654
This paper presents the results of modeling the parameters of a compact autocollimator with a single-coordinate detector in the form of a linear-array camera. The modeling was carried out by successively tracing the rays through the elements of the autocollimator’s optical system between the conjugate planes of the mark and the detector with intermediate reflection from a flat mirror. The described original shape of the mark and algorithm for processing the measured signals to be modeled make it possible to implement a broad-band operating regime in the device with high-accuracy angle measurements in the center of the range.
autocollimator, rays tracing, Monte Carlo method, measurement error, linear array of CCDs, pixel occupancy
OCIS codes: 120.0120, 120.1680, 080.0080, 080.2720, 000.5490
References:1. D. A. Anikst, K. M. Kostantinovich, I. V. Mes’kin, and É. D. Pankov, High-Accuracy Angle Measurements, Yu. G. Yakushenkov, ed. (Mashinostroenie, Moscow, 1987).
2. Z. Bian, M. Gao, Z. Dong, Q. Ye, R. Qu, and Z. Fang, “Two-coordinate dynamic photoelectric autocollimator based on single linear CCD,” Proc. SPIE 7855, 78550H (2010).
3. “Electronic autocollimators—Measure with precision,” Möller-Wedel Optical Gmbh, https://www.haag-streit.com/fileadmin/Moeller_wedel_optical/Brochures/Electronic_Autocollimators/ELCOMAT__English.pdf.
4. V. A. Burmistrenko, É. M. Bogdanovich, A. Vanyurikhin, I, and É. P. Galish, “Device for monitoring the accuracy of autocollimators,” Inventor’s certificate 560135, 30 May 1977, Bulletin No. 20.
5. I. A. Konyakhin and A. M. Vorona, “Experimental studies of a broadband autocollimator,” Nauchno-Tekhn. Vestn. SPbGU ITMO (18), 224–227 (2005).
6. Yu. P. Zhukov, I. L. Lovchi, Yu. I. Pestov, V. A. Sergeev, and B. G. Stradov, “Compact two-coordinate digital autocollimator,” J. Opt. Technol. 86(8), 476–479 (2019) [Opt. Zh. 86(8), 29–35 (2019)].
7. V. S. Sulaberidze, Methods of Analyzing and Processing Measured Values (Balt. Gos. Tekhn. Univ., St. Petersburg, 2013).
8. Yu. M. Golubovski and L. N. Pivovarova, “Measurement error of a photoelectric autocollimator at different distances to the autocollimation mirror,” J. Opt. Technol. 62(6), 410–412 (1995) [Opt. Zh. 62(6), 69–71 (1995)].
9. M. I. Avenko, L. A. Zapryagaeva, and I. S. Sveshnikova, Problem Book on Applied Optics (Vyssh. Shkola, Moscow, 2003).