DOI: 10.17586/1023-5086-2021-88-03-72-76
УДК: 535.343.4, 616.216
Application of high-resolution terahertz gas spectroscopy to the compositional analysis of the thermal decomposition products of paranasal sinus cyst tissue
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Вакс В.Л., Домрачева Е.Г., Черняева М.Б., Анфертьев В.А., Айзенштадт А.А., Гаврилова К.А., Ларин Р.А. Применение метода терагерцовой газовой спектроскопии высокого разрешения для анализа состава продуктов термического разложения тканей кист околоносовых пазух // Оптический журнал. 2021. Т. 88. № 3. С. 72–76. http://doi.org/10.17586/1023-5086-2021-88-03-72-76
Vaks V.L., Domrachyova E.G., Chernyaeva M.B., Anfertiyev V.A., Ayzenshtadt A.A., Gavrilova K.A., Larin R.A. Application of high-resolution terahertz gas spectroscopy to the compositional analysis of the thermal decomposition products of paranasal sinus cyst tissue [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 3. P. 72–76. http://doi.org/10.17586/1023-5086-2021-88-03-72-76
V. L. Vaks, E. G. Domracheva, M. B. Chernyaeva, V. A. Anfertev, A. A. Ayzenshtadt, K. A. Gavrilova, and R. A. Larin, "Application of high-resolution terahertz gas spectroscopy to the compositional analysis of the thermal decomposition products of paranasal sinus cyst tissue," Journal of Optical Technology. 88(3), 166-168 (2021). https://doi.org/10.1364/JOT.88.000166
We report results of the application of high-resolution terahertz gas spectroscopy to studies on tissues of the membranes of paranasal sinus cysts and intrasinusoidal fluids. A complex of metabolites occurring upon thermal decomposition of the samples was identified. The proposed approach is promising for the development of a method of noninvasive medical diagnostics and prognosis after the excision of cysts.
high-resolution spectroscopy, terahertz frequency range, metabolites, paranasal sinus cyst
Acknowledgements:The research was carried out as a part of a state assignment (0030-2021-0024, 0030-2019-0021) and was supported by Russian Foundation for Basic Research (18-42-520050 r_a, 17-00-00275 (K), and 17-00-00184).
OCIS codes: 300.6495, 300.6390, 300.6320, 170.4940, 170.1470
References:1. S. A. Karpishchenko, A. Voloshina, O. Stancheva, and D. Yusupov, “Acute isolated sphenoiditis: tactics and treatment,” Vrach 30(4), 49–53 (2019).
2. V. I. Egorov, A. S. Lopatin, G. Z. Piskunov, and S. V. Ryazantsev, “Rhinosinusitis polyposa: clinical guidelines” (National Association of Otorhinolaryngologists, 2016).
3. J. Rimmer, P. Hellings, V. J. Lund, I. Alobid, T. Beale, C. Dassi, R. Douglas, C. Hopkins, L. Klimek, B. Landis, R. Mosges, G. Ottaviano, A. Psaltis, P. Surda, P. V. Tomazic, J. Went, and W. Fokkens, “European position paper on diagnostic tools in rhinology,” Rhinology 57(28), 1–42 (2019).
4. I. V. Sadovnikova, A. A. Aizenshtadt, and M. A. Melkumova, “Markers of immune response expression of the adenotonsillar complex under physical development in the case of inflammatory diseases of upper respiratory tracts of young children,” Med. Al’m. 2(47), 60–63 (2017).
5. S. V. Krasil’nikova, D. Yu, Ovsyannikov, T. I. Eliseeva, E. V. Tush, E. V. Bol’shova, R. A. Larin, P. A. Frolov, and I. I. Balabolkin, “Thymic stromal lymphopoietin as a predictor of hypertrophic changes in the nasal mucosa in children with atopic bronchial asthma and allergic rhinitis,” Pediatriya 99(4), 71–78 (2020).
6. D. S. Wishart, Y. D. Feunang, A. Marcu, A. C. Guo, K. Liang, R. V. Fresno, T. Sajed, D. Johnson, C. Li, N. Karu, Z. Sayeeda, E. Lo, N. Assempour, M. Berjanskii, S. Singhal, D. Arndt, Y. Liang, H. Badran, J. Grant, A. Serra-Cayuela, Y. Liu, R. Mandal, V. Neveu, A. Pon, C. Knox, M. Wilson, C. Manach, and A. Scalbert, “HMDB 4.0—the human metabolome database for 2018,” Nucleic Acids Res. 46(D1), D608–D617 (2018).
7. W. J. Fokkens, V. J. Lund, and C. Hopkins, “European position paper on rhinosinusitis and nasal polyps,” Rhinology 58(29), 1–464 (2020).
8. E. V. Stepanov, Diode Laser Spectroscopy and Analysis of Biomarker Molecules (Fizmatlit, Moscow, 2009).
9. V. N. Bingi, E. V. Stepanov, A. G. Chuchalin, V. A. Milyaev, K. L. Moskalenko, Yu. A. Shulagin, and L. R. Yangurazova, “Highly sensitive analysis of NO, NH3 , and CH4 in exhaled air using tunable diode lasers,” Tr. Inst. Obshch. Fiz. Im. A. M. Prokhorova 61, 189–210 (2005).
10. V. Vaks, “High-precise spectrometry of the terahertz frequency range: the methods, approaches and applications,” J. Infrared, Millimeter, Terahertz Waves 33(1), 43–53 (2012).
11. V. L. Vaks, V. A. Anfertev, V. Y. Balakirev, S. A. Basov, E. G. Domracheva, A. V. Illyuk, P. V. Kupriyanov, S. I. Pripolzin, and M. B. Chernyaeva, “High resolution terahertz spectroscopy for analytical applications,” Phys.-Usp. 63, 708–720 (2020).
12. H. M. Pickett, E. A. Cohen, B. J. Drouin, and J. C. Pearson, “Submillimeter, millimeter, and microwave spectral line catalog,” JPL Molecular Spectroscopy, California Institute of Technology, http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html.
13. C. P. Endres, S. Schlemmer, P. Schilke, J. Stutzki, and H. S. P. Müller, “The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC,” J. Mol. Spectrosc. 327, 95–104 (2016).
14. V. A. Yablokov, Ya. A. Vasina, I. A. Zelyaev, and S. V. Mitrofanova, “Kinetics of thermal decomposition of sulfur-containing amino acids,” Russ. J. Gen. Chem. 79(6), 1141 (2009) [Zh. Obshch. Khim. 79(6), 969–973 (2009)].