DOI: 10.17586/1023-5086-2021-88-04-03-11
УДК: 535.417.26
Numerical simulation of a laser with a Q-switched cavity for production of ultrashort pulses
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Грязнов Н.А., Родионов А.Ю., Горячкин Д.А., Купренюк В.И., Соснов Е.Н., Алексеев В.Л. Численное моделирование лазера с переключаемой добротностью резонатора для генерации ультракоротких импульсов // Оптический журнал. 2021. Т. 88. № 4. С. 3–11. http://doi.org/10.17586/1023-5086-2021-88-04-03-11
N. A. Gryaznov, A. Yu. Rodionov, D. A. Goryachkin, V. I. Kuprenyuk, E. N. Sosnov, and V. L. Alekseev Numerical simulation of a laser with a Q-switched cavity for production of ultrashort pulses [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 4. P. 3–11. http://doi.org/10.17586/1023-5086-2021-88-04-03-11
N. A. Gryaznov, A. Yu. Rodionov, D. A. Goryachkin, V. I. Kuprenyuk, E. N. Sosnov, and V. L. Alekseev, "Numerical simulation of a laser with a Q-switched cavity for production of ultrashort pulses," Journal of Optical Technology. 88(4), 169-174 (2021). https://doi.org/10.1364/JOT.88.000169
A theoretical model was developed to calculate lasing modes for giant pulses in solid-state lasers with Q-switched cavities. The lasing process begins with steady-state mode locking. Then, when a control pulse is fed to the cavity electro-optic modulator, the light propagating in the cavity is amplified. When the laser pulse reaches maximum energy, the cavity opens, producing a single ultrashort pulse. Simulations performed using a commercial 50 W Nd:YAG solid-state CW laser diode pump module indicated that, when the driver parameters for the electro-optical modulator are optimized, the cavity switching mode can be used for high-efficiency extraction of almost all the energy (up to 20 mJ) stored in the laser medium in steady-state mode in the form of a single pulse with a duration in the hundreds of picoseconds.
mode locking, cavity switching, controlled composite exit mirror
Acknowledgements:The research was supported by Ministry of Education and Science of the Russian Federation within the state assinment No. 075-00924-19-00 of 28.12.2018.
OCIS codes: 140.0140
References:1. V. I. Donin, D. V. Yakovin, A. V. Gribanov, and M. D. Yakovin, “New method of Q-switching with mode locking in solid-state lasers,” J. Opt. Technol. 85, 193–196 (2018) [Opt. Zh. 85(4), 8–11 (2018)].
2. N. A. Gryaznov, E. N. Sosnov, D. A. Goryachkin, V. M. Nikitina, and A. Yu. Rodionov, “Active phase mode locking in a cavity with a controllable Michelson interferometer,” J. Opt. Technol. 86, 197–203 (2019) [Opt. Zh. 86(4), 1–8 (2019)].
3. J. A. Russell and R. A. Sierra, “Flash-lamp-excited self-injection-seeded Q-switched Ti:Al2 O3 laser oscillator,” Appl. Opt. 35, 4754–4757 (1996).
4. V. Morozov, A. Olenin, V. Tunkin, and D. Yakovlev, “Picosecond lasers with pulsed diode pumping,” Fotonika (1), 34–37 (2008).
5. D. Hohm, M. Mirkov, R. S. Welches, and R. A. Sierra, “Picosecond laser apparatus and methods for its operation and use,” U.S. patent 7929579 B2 (2011).
6. PicoSure product brochure, https://www.cynosure.com/product/picosure/.
7. V. A. Lopota, V. V. Kirichenko, and N. A. Gryaznov, “Optical laser cavity,” Russian patent 2297084 (April 10, 2007).
8. O. Svelto, Principles of Lasers, 3rd ed. (Plenum, New York, 1989; Mir, Moscow, 1990).