ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-04-61-69

УДК: 535.8

Creation of a SMART Layer prototype with fiber-optic sensors for monitoring the stress–strain state of structures fabricated from polymeric composite materials and an estimation of its technical characteristics

For Russian citation (Opticheskii Zhurnal):

Шипунов Г.С., Баранов М.А., Никифоров А.С., Тихонова А.А., Осокин В.М., Третьяков А.А. Создание прототипа Smart-слоя с волоконно-оптическими датчиками для контроля напряжённо-деформированного состояния конструкций из полимерных композиционных материалов и оценка его технических характеристик // Оптический журнал. 2021. Т. 88. № 4. С. 61–69. http://doi.org/10.17586/1023-5086-2021-88-04-61-69

 

Shipunov G.S., Baranov M.A., Nikiforov A.S., Tikhonova A.A., Osokin V.M., Tretiyakov A.A. Creation of a SMART Layer prototype with fiber-optic sensors for monitoring the stress–strain state of structures fabricated from polymeric composite materials and an estimation of its technical characteristics [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 4. P. 61–69. http://doi.org/10.17586/1023-5086-2021-88-04-61-69

For citation (Journal of Optical Technology):

G. S. Shipunov, M. A. Baranov, A. S. Nikiforov, A. A. Tikhonova, V. M. Osokin, and A. A. Tret’yakov, "Creation of a SMART Layer prototype with fiber-optic sensors for monitoring the stress–strain state of structures fabricated from polymeric composite materials and an estimation of its technical characteristics," Journal of Optical Technology. 88(4), 209-214 (2021). https://doi.org/10.1364/JOT.88.000209

Abstract:

This article describes research on the creation of a SMART Layer that makes it possible to solve problems concerning the incorporation, protection, and determination of the actual site of fiber-optic sensors with Bragg gratings. Various configurations are considered for the creation and utilization of SMART Layers based on polyurethane, polyamide, and a reinforced polymer grid. We demonstrate the possibility and correctness of the decryption of the information obtained from fiber-optic sensors incorporated in a SMART Layer when samples with such layers undergo uniaxial stretching. We discuss how the actual site of various configurations of embedded SMART Layers can be determined by radiation methods of non-destructive testing. It is established that the prototypes of SMART Layers developed here make it possible to solve questions associated with variation of the placement of fiber sensors after structures are formed from polymeric composite materials. The advantages and disadvantages of various configurations of SMART Layers are described, along with the possibility of using them for various monitoring tasks.

Keywords:

fiber-optic sensors, SMART layer, stress-strain properties, data decoding, actual site of Bragg gratings, radiation methods of non-destructive testing

Acknowledgements:

The research was carried out within the state assignment of the Ministry of science and higher education of the Russian Federation for fundamental scientific research execution (project No. FSNM-2020-0026).

OCIS codes: 050.1950, 060.2290, 060.2370, 060.3735

References:

1. G. Luyckx, E. Voet, W. De Waele, and J. Degrieck, “Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: I. Parametric study,” Smart Mater. Struct. 19, 105017 (2010).
2. T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct. 17, 035033 (2008).
3. A. Guemes, A. Fernandez-Lopez, and B. Soller, “Optical fiber distributed sensing—physical principles and applications,” Struct. Health Monit. 9, 233–245 (2010).
4. Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng. 47, 1028–1033 (2009).
5. D. Sasi, S. Philip, R. David, and J. Swathi, “A review on structural health monitoring of railroad track structures using fiber optic sensors,” Mater. Today: Proc. 33, 3787–3793 (2020).
6. M. Prabhugoud and K. Peters, “Efficient simulation of Bragg grating sensors for implementation to damage identification in composites,” Smart Mater. Struct. 12, 914–924 (2003).
7. K. Bremer, M. Wollweber, F. Weigand, M. Rahlves, M. Kuhne, R. Helbig, and B. Roth, “Fibre optic sensors for the structural health monitoring of building structures,” Procedia Technol. 26, 524–529 (2016).
8. T. Fu, Y. Liu, Q. Li, and J. Leng, “Fiber optic acoustic emission sensor and its applications in the structural health monitoring of CFRP materials,” Opt. Lasers Eng. 47, 1056–1062 (2009).
9. C. Sbarufatti, A. Manes, and M. Giglio, “Application of sensor technologies for local and distributed structural health monitoring,” Struct. Control Health Monit. 21(7), 1057–1083 (2014).
10. P. K. Mallick, Fiber-Reinforced Composite Materials, Manufacturing and Design (Taylor & Francis, Boca Raton, Florida, 2007).
11. P. Motwani, N. Perogamvros, S. Taylor, M. Sonebi, A. Laskar, and A. Murphy, “Experimental investigation of strain sensitivity for surface bonded fiber optic sensors,” Sens. Actuators A 303, 111833 (2020).
12. A. Baker, S. Dutton, and D. Kelly, eds., Composite Materials for Aircraft Structures (American Institute of Aeronautics and Astronautics, Blacksburg, Virginia, 2004).
13. S. A. Firsov and L. L. Yurgenson, “Principles of the construction of a system for monitoring the technical status of a design for aviation designs,” Prikl. Fotonika (4), 280–296 (2017).
14. M. A. Tashkinov and I. N. Shardakov, “Numerical analysis of the effect of microscale components interaction on measurements of fiber-optic strain sensors used in composite structures,” Adv. Mater. Sci. Eng. 2019, 1714608 (2019).
15. A. A. Voronkov, A. N. Anoshkin, M. A. Nikhamkin, G. S. Shipunov, N. A. Sazhenkov, and A. S. Nikiforov, “Registration of dynamic deformations of a composite material by fiber-optic sensors,” AIP Conf. Proc. 2216, 040021 (2020).
16. I. N. Shardakov, A. P. Shestakov, G. S. Serovaev, N. A. Kosheleva, and V. V. Epin, “The study of impact loading on GFRP plates using a network of piezoceramic sensors,” IOP Conf. Ser.: Mater. Sci. Eng. 581, 012030 (2019).
17. G. S. Shipunov, A. A. Voronkov, K. A. Pelenev, and D. V. Golovin, “Estimating the accuracy of the indications of fiber-optic sensors based on Bragg gratings when testing the outlet guide vane from carbon fiber,” AIP Conf. Proc. 2051, 020279 (2018).
18. G. S. Shipunov, A. A. Voronkov, K. A. Pelenev, and K. N. Shestakova, “Calculation and experimental study of the stress-strain state of the power frame of an aviation engine equipped with fiber optic sensors,” AIP Conf. Proc. 2053, 040091 (2018).
19. A. Voronkov, N. Kosheleva, and K. Pelenev, “Experimental study of the stress-strain state features of outlet guide vane made from polymeric composite material using fiber optic sensors,” in International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 3–4 October 2018.
20. I. N. Shardakov, N. A. Kosheleva, G. S. Serovaev, A. P. Shestakov, and G. S. Shipunov, “Stress-strain state analysis and structural evaluation of PCM construction consisting of heterogeneous elements,” Int. J. Mech. Eng. Technol. 9(10), 1157–1171 (2018).
21. A. A. Pan’kov, “Mathematical model for diagnosing strains by an optical fiber sensor with a distributed Bragg grating according to the solution of a Fredholm integral equation,” Mech. Compos. Mater. 54(4), 513–522 (2018).
22. A. A. Pan’kov and P. V. Pisarev, “ANSYS numerical modeling of electroelastic fields in the piezoelectro luminescent fiber-optical sensor diagnosing the composite volume deformed state,” Vestn. Permsk. Nats. Issled. Politekh. Univ.: Mekh (3), 153–166 (2017).
23. G. S. Serovaev, V. P. Matveenko, N. A. Kosheleva, and A. Y. Fedorov, “Numerical modeling of the capillary in the Bragg grating area, ensuring uniaxial stress state of embedded fiber-optic strain sensor,” Procedia Struct. Integr. 17, 371–378 (2019).
24. A. Kumar, X. Qing, S. Beard, C. Zhang, Z. Yu, and I. Li, “Structural health monitoring layer having distributed electronics,” US patent 20070018083 (Jan. 2007).
25. X. P. Qing, S. J. Beard, A. Kumar, H.-L. Chan, and R. Ikegami, “Advances in the development of built-in diagnostic system for filament wound composite structures,” Compos. Sci. Technol. 66, 1694–1702 (2006).
26. N. N. Potrakhov, A. N. Anoshkin, V. Yu. Zu˘ıko, V. M. Osokin, P. V. Pisarev, and K. A. Pelenev, “Numerical and experimental study of composite bulkhead partition strength with in-situ x-ray monitoring,” Vestn. Permsk. Nats. Issled. Politekh. Univ.: Mekh. (1), 118–133 (2017).
27. GOST R 56785-2015, “Polymeric composites. Method for testing the stretching of flat samples.”
28. H. Alemohammed, “Opto-mechanical modeling of fiber Bragg grating sensors,” in Opto-Mechanical Fiber Optic Sensors (2018), pp. 1–26.
29. G. S. Shipunov, M. A. Baranov, A. S. Nikiforov, D. V. Golovin, and A. A. Tikhonova, “Study Smart-layer effect on the physical and mechanical characteristics of the samples from polymer composite materials under quasi-static loading,” Vestn. Permsk. Nats. Issled. Politekh. Univ.: Mekh. (4), 188–200 (2020).
30. V. P. Matveenko, N. A. Kosheleva, I. N. Shardakov, and A. A. Voronkov, “Temperature and strain registration by fibre-optic strain sensor in the polymeric composite materials manufacturing,” Int. J. Smart Nano Mater. 9(2), 99–110 (2018).