ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-06-36-44

УДК: 681.7.063

Experimental investigation and simulation of phase-shifted fiber Bragg gratings

For Russian citation (Opticheskii Zhurnal):

Новикова В.А., Варжель С.В., Лосева Е.А., Дмитриев А.А. Экспериментальное исследование и моделирование волоконных брэгговских решёток с фазовым сдвигом // Оптический журнал. 2021. Т. 88. № 6. С. 36–44. http://doi.org/10.17586/1023-5086-2021-88-06-33-44

 

Novikova V.A., Varzhel S.V., Loseva E.A., Dmitriev A.A. Experimental investigation and simulation of phase-shifted fiber Bragg gratings [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 6. P. 36–44. http://doi.org/10.17586/1023-5086-2021-88-06-33-44

For citation (Journal of Optical Technology):

V. A. Novikova, S. V. Varzhel’, E. A. Loseva, and A. A. Dmitriev, "Experimental investigation and simulation of phase-shifted fiber Bragg gratings," Journal of Optical Technology. 88(6), 315-320 (2021). https://doi.org/10.1364/JOT.88.000315

Abstract:

This work reports the inscription and investigation of phase-shifted fiber Bragg gratings. A method for the inscription of such structures that makes it possible to vary the full width at half-maximum of the transmission notch in the reflection band within the range of 8–76 pm is proposed. The influence of the amplitude of the induced refractive index modulation and length of the formed structure on the studied parameter is investigated and analyzed. The results are presented as curves for data collected experimentally and theoretically. The investigation conducted in this study makes it possible to manufacture structures with known widths of the transmission notches, opening up a wide spectrum of possibilities to design optical elements based on such specific Bragg grating structures (e.g., fiber-optic sensors, tunable transmission filters, and demultiplexers).

Keywords:

fiber Bragg grating, phase shift, Fabry-Perot interferometer, fiber diffraction structure

OCIS codes: 060.3735, 060.3738, 230.1950, 050.5080

References:

1. H. Jiang, J. Chen, T. Liu, and H. Fu, “Design of an FBG sensor network based on Pareto multi-objective optimization,” IEEE Photon. Technol. Lett. 25(15), 1450–1453 (2013).
2. S. Spolitis and G. Ivanovs, “Extending the reach of DWDM-PON access network using chromatic dispersion compensation,” in IEEE
Swedish Communication Technologies Workshop (2011), pp. 29–33.
3. S. Liu, F. Yan, W. Peng, T. Feng, Z. Dong, and G. Chang, “Tunable dual-wavelength thulium-doped fiber laser by employing a HB-FBG,”
IEEE Photon. Technol. Lett. 26(18), 1809–1812 (2014).
4. S. V. Alyshev, K. E. Ryumkin, A. V. Shubin, O. I. Medvedkov, V. F. Khopin, A. N. Gur’yanov, and E. M. Dianov, “Fibre laser based on
tellurium-doped active fibre,” Quantum Electron. 44(2), 95–97 (2014).
5. S. Wang, Y. Wang, M. Hu, J. Wang, C. Guo, and H. Lei, “A new style of FBG vibration sensor,” J. Basic Appl. Phys. 2(1), 20–23 (2013).
6. Q. Jiang, M. Yu, X. Zhou, T. Guo, and J. Song, “A novel fiber Bragg grating accelerometer based on fiber vibrating wire,” in Proceedings
of the 8th International Conference on Sensing Technology (2014), pp. 529–533.
7. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
8. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
9. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, 1999).
10. K. C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of chirped Bragg gratings in photosensitive fibre,” Electron. Lett. 29(18), 1659–1660 (1993).
11. A. A. Mikhneva, A. I. Gribaev, S. V. Varzhel, E. A. Frolov, V. A. Novikova, K. A. Konnov, and Y. K. Zalesskaya, “Inscription and investigation of the spectral characteristics of chirped fiber Bragg gratings,” J. Opt. Technol. 85(9), 531–534 (2018) [Opt. Zh. 85(9), 12–16 (2018)].
12. R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, “Novel method of producing all fibre photoinduced chirped gratings,” Electron. Lett. 30(12), 996–998 (1994).
13. R. F. Idrisov, S. V. Varzhel, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, M. Becker, K. Schuster, and H. Bartelt, “Spectral characteristics of draw-tower step-chirped fiber Bragg gratings,” Opt. Laser Technol. 80, 112–115 (2016).
14. G. Meltz, W. W. Morey, and W. H. Glenn, “In-fiber Bragg grating tap,” in Optical Fiber Communication Conference (1990), paper TUG1.
15. K. A. Konnov, E. A. Frolov, A. I. Gribaev, V. V. Zakharov, A. A. Mikhneva, V. A. Novikova, and S. V. Varzhel, “Inscription and visualization of tilted fiber Bragg gratings,” Opt. Spectrosc. 125(1), 54–59 (2018).
16. A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1973 (1994).
17. R. F. Idrisov, A. I. Gribaev, A. M. Stam, S. V. Varzhel’, Y. I. Slozhenikina, and K. A. Konnov, “Inscription of superimposed fiber Bragg gratings using a Talbot interferometer,” J. Opt. Technol. 84(10), 694–697 (2017) [Opt. Zh. 84(10), 56–60 (2017)].
18. Y. Liu, S. B. Lee, and S. S. Choi, “Phase-shifted fiber Bragg Grating transmission filters based on the Fabry-Perrot effect,” J. Opt. Soc. Korea 2(1), 30–33 (1998).
19. V. A. Novikova, S. V. Varzhel, K. A. Konnov, A. I. Gribaev, A. A. Mikhneva, and E. A. Frolov, “Phase-shifted fiber Bragg gratings fabrication method,” J. Phys.: Conf. Ser. 1038, 012095 (2018).
20. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
21. J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
22. R. Kashyap, P. F. McKee, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks,” Electron. Lett. 30(23), 1977–1978 (1994).
23. E. Chehura, S. James, and R. Tatam, “A simple method for fabricating phase-shifted fibre Bragg gratings with flexible choice of centre wavelength,” Proc. SPIE 7503, 750379 (2009).
24. Y. Yang, X. Liu, and W. Jin, “Phase shifted fiber Bragg grating fabrication techniques and their laser applications,” in Asia Communications and Photonics Conference (2013), paper ATh3D.5.
25. S. A. Vasil’ev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fibre gratings and their applications,” Quantum Electron. 35(12), 1085–1103 (2005).
26. A. M. Stam, R. F. Idrisov, A. I. Gribaev, S. V. Varzhel, K. A. Konnov, and Y. I. Slozhenikina, “Fiber Bragg gratings inscription using Talbot interferometer and KrF excimer laser system,” J. Instrum. Eng. 60(5), 466–473 (2017).
27. A. I. Gribaev, I. V. Pavlishin, A. M. Stam, R. F. Idrisov, S. V. Varzhel, and K. A. Konnov, “Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer,” Opt. Quantum Electron. 48, 540 (2016).
28. C. Martinez and P. Ferdinand, “Analysis of phase-shifted fiber Bragg gratings written with phase plates,” Appl. Opt. 38(15), 3223–3228 (1999).
29. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
30. H. Kogelnik and C. W. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
31. M. Matsuhar, K. O. Hill, and A. Watanabe, “Optical-waveguide filters: synthesis,” J. Opt. Soc. Am. 65(7), 804–809 (1975).
32. M. Yamada and K. Sakuda, “Analysis of almost periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26(16), 3474–3478 (1987).
33. S. V. Arkhipov, “Investigation and optimization of technology for inscription of Bragg gratings in anisotropic optical fibers,” Doctoral thesis (SPb NIU ITMO, St. Petersburg, 2017).