ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-07-03-11

УДК: 535.8, 617.7

Detection of genetically modified substances based on terahertz and multi-weight vector neural network

For Russian citation (Opticheskii Zhurnal):

J. Liu, T. Li, S. Yang, L. Fan Fan, F. Ding, X. Pan Detection of genetically modified substances based on terahertz and multi-weight vector neural network (Определение генетически модифицированных продуктов на основе анализа терагерцовых спектров многовесовой нейронной сетью) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 7. С. 3–11. http://doi.org/10.17586/1023-5086-2021-88-07-03-11

 

J. Liu, T. Li, S. Yang, L. Fan Fan, F. Ding, X. Pan Detection of genetically modified substances based on terahertz and multi-weight vector neural network (Определение генетически модифицированных продуктов на основе анализа терагерцовых спектров многовесовой нейронной сетью) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 7. P. 3–11. http://doi.org/10.17586/1023-5086-2021-88-07-03-11

For citation (Journal of Optical Technology):

J. Liu, T. Li, S. Yang, L. Fan Fan, F. Ding, and X. Pan, "Detection of genetically modified substances based on the terahertz spectrum and a multi-weight vector neural network," Journal of Optical Technology. 88(7), 354-359 (2021). https://doi.org/10.1364/JOT.88.000354

Abstract:

Genetically modified food has always been a hot issue in the field of food safety. Genetically modified food has always been a hot issue in the field of food safety. In order to realize the detection of genetically modified materials, a bionic recognition model of multi-weight vector neural network is proposed by combining multi-weight vector neural network with terahertz time domain spectroscopy. In this paper, for each class of samples, 50 samples are randomly selected as the training set, a multiweight vector neural network bionic recognition model is established, and 50 samples are selected as the first test set to verify the recognition rate. Other dissimilar samples are used as the second testset to verify their misjudgment rate. The experimental results show that the model can effectively identify transgenic materials with similar spectral characteristics. The model proposed in this paper provides a new method for the detection and identification of genetically modified organisms.

Keywords:

terahertz spectroscopy, principal component, multi weight vector neuron

Acknowledgements:

This work is supported by Support for scientific research projects (scientific research projects in colleges and universities) (No. 2019KTSCX165); supported by Foundation Funded Project of doctoral (No. 99000617); supported in part by research grants from the Science and Technology Program of Shaoguan (No. 2019sn056; 2019sn066), supported in part by the Key platforms and major scientific research projects of Universities in Guangdong (No. 2017KQNCX183), supported in part by the Key Project of Shaoguan University (No. SZ2017KJ08).

OCIS codes: 300.0300, 040.2235, 010.1030

References:

1. Jianjun Liu. Recognition of genetically modified product based on affinity propagation clustering and terahertz spectroscopy // Spectrochem. Acta A. 2018. V. 194. P. 14–20.
2. Jianjun Liu. High-sensitivity detection method for organochlorine pesticide residues based on loop-shaped absorber // Mater. Chem. Phys. 2020. V. 242. P. 122542.
3. Moreira Ivanira, Scarminio Ieda Spacino. Chemometric discrimination of genetically modified Coffea arabica cultivars using spectroscopic and chromatographic fingerprints // Talanta. 2013. V. 107. № 3. P. 416–422.
4. Vergragt P.J., Brown H.S. Genetic engineering in agriculture: New approaches for risk management through sustainability reporting // Technol. Forecast. Soc. Change. 2008. V. 75. P. 783–798.
5. Jianjun Liu, Lili Mao, Jinfeng Ku, et al. THz spectroscopy detection method for GMOs based on adaptive particle swarm optimization // Opt. and Quantum Electron. 2016. V. 48. № 2. P. 167–173.
6. Jianjun Liu, Zhi Li, Fangrong Hu, et al. Identification of transgenic organisms based on terahertz spectroscopy and hyper sausage neuron // J. Appl. Spectrosc. 2015. V. 82. № 1. P. 104–110.
7. Jianjun Liu, Zhi Li, Fangrong Hu, et al. Hyper sausage neuron: Recognition of transgenic sugar-beet based on terahertz spectroscopy // Opt. and Spectrosc. 2015. V. 118. № 1. P. 175–180.
8. Jianjun Liu, Zhi Li. The terahertz spectrum detection of transgenic food // Optik. 2014. V. 125. № 23. P. 6867–6869.
9. Nakamura K., Akiyama H., Kawano N., et al. Evaluation of real-time PCR detection methods for detecting rice products contaminated by rice genetically modified with a CpTI-KDEL-T-nos transgenic construct // Food Chem. 2013. V. 141. P. 2618–2624.
10. Alcantara G.B., Bsrison A., Santos M.S., et al. Assessment of genetically modified soybean crops and different cultivars by Fourier transform infrared spectroscopy and chemometric analysis // Orbital. Electron. J. Chem. 2010.V. 2. P. 41–52.
11. Burnett A.D., Fan W.H., Upadhya P.C., et al. Broadband terahertz time-domain spectroscopy of drugs-ofabuse and the use of principal component analysis // Analyst. 2009. V. 134. P. 1658–1668.
12. Jianjun Liu, Zhi Li, Fangrong Hu, et al. Method for identifying transgenic cottons based on terahertz spectra and WLDA // Internat. J. Light Electron Opt. 2015.V. 126. P. 1872–1877.
13. Nie Jun-Yang, Zhang Wen-Tao, Xiong Xian-Ming, et al. Recognition of transgenic soybeans based on terahertz spectroscopy and PCA-BPN network // Acta Photonica Sinica. 2016. V. 45. № 5. P. 1–7.

14. Jianjun Liu, Zhi Li, Fangrong Hu, et al. Identification of transgenic organisms based on terahertz spectroscopy and hyper sausage neuron // J. Appl. Spectrosc. 2015. V. 82. № 1. P. 109–114.
15. Liu J., Yang S. Research on the terahertz temperature correlation of L-tyrosine and L-alanine // JOT. 2021. V. 88. P. 1–8.
16. Wang Shou-Jue, Xu Jian, Wang Xian-Bao, et al. Multi-camera human-face personal identification system based on the biomimetic pattern recognition // Acta Electronica Sinica. 2003. V. 31. № 1. P. 1–3.
17. Xiao-Na, Huang Da-Zhuang, Shen Zu-Rui, et al. Research on artificial neural network method used for insects classification and identification principal componet analysis and mathematical modeling // J. Biomathematics. 2013. V. 28. № 1. P. 23–33.
18. Cao Fang, Wu Di, He Yong, et al. Variety discrimination of grapes based on visible-near reflection infrared spectroscopy // Acta Optica Sinica. 2009.V. 29. № 2. P. 537–540.