DOI: 10.17586/1023-5086-2021-88-09-20-27
УДК: 520.2, 535.3
Investigation of three-mirror objectives for Earth remote sensing operating with an off-axis field of view
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Бутылкина К.Д., Романова Г.Э., Васильев В.Н., Валявин Г.Г. Исследование трехзеркальных объективов, работающих с внеосевым полем, для дистанционного зондирования Земли // Оптический журнал. 2021. Т. 88. № 9. С. 20–27. http://doi.org/10.17586/1023-5086-2021-88-09-20-27
Butylkina K.D., Romanova G.E., Vasiliev V.N., Valiyavin G.G. Investigation of three-mirror objectives for Earth remote sensing operating with an off-axis field of view [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 9. P. 20–27. http://doi.org/10.17586/1023-5086-2021-88-09-20-27
K. D. Butylkina, G. E. Romanova, V. N. Vasil’ev, and G. G. Valyavin, "Investigation of three-mirror objectives for Earth remote sensing operating with an off-axis field of view," Journal of Optical Technology. 88(9), 497-502 (2021). https://doi.org/10.1364/JOT.88.000497
The design, investigation, and enhancement of telescope objectives used as the principal optical instrument in Earth remote sensing systems are relevant because of the wide application range of the data obtained by such systems. Three-mirror systems can be used as objectives to ensure the set of parameters required for modern instruments (a focal distance of up to 5 m, an angular field of up to 2°–3°, a maximum spatial resolution of up to 0.75–2 m). However, the primary factor affecting the image quality in traditional compact centered systems is the obscuration of the pupil. A method for designing three-mirror flat-field anastigmats operating with an off-axis field of view without obscuration is presented in this paper, together with a discussion of peculiarities and a possible method for evaluating the complexity of calculation of such systems using a complexity coefficient. Objectives with focal distances of 1000 and 1600 mm, f-number of 4–5, and angular field of up to 1°–2° are designed.
three-mirror objectives, mirror flat-field anastigmat, complexity coefficient, off-axis field systems, Earth remote sensing
Acknowledgements:The research was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 075-15-2020-780).
OCIS codes: 220.1000, 350.1260, 350.6090, 230.4040,110.6770
References:1. I. N. Gansvind, “Small satellites in remote sensing of the Earth,” Issled. Zemli Kosmosa (5), 82–88 (2019).
2. E. N. Kulik, “Prompt space monitoring: yesterday, today and tomorrow,” Interekspo Geo-Sibir’ (3), 136–141 (2012).
3. “State of orbit group of spacecrafts for Earth remote sensing on 01.07.2020,” Distantsionnoe Zondirovanie Zemli Kosmosa Ross. (2), 16–22 (2020).
4. S. A. Bartalev, V. A. Egorov, V. O. Zharko, E. A. Loupian, D. E. Plotnikov, and S. A. Khvostikov, “Current state and development prospects of satellite mapping methods of Russia’s vegetation cover,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 12(5), 203–221 (2015).
5. A. M. Savitskii and M. N. Sokol’skii, “Optical systems of objectives for small spacecraft,” J. Opt. Technol. 76(10), 657–661 (2009) [Opt. Zh. 76(10), 83–88 (2009)].
6. G. Ju, H. Ma, Z. Gu, and C. Yan, “Experimental study on the extension of nodal aberration theory to pupil-offset off-axis three-mirror anastigmatic telescopes,” J. Astron. Telescopes Instrum. Syst. 5(2), 029001 (2019).
7. G. Ju, C. Yan, Z. Gu, and H. Ma, “Nonrotationally symmetric aberrations of off-axis two-mirror telescopes induced by axial misalignments,” Appl. Opt. 57(6), 1399–1409 (2018).
8. X. Zhang, S. Xu, H. Ma, and N. Liu, “Optical compensation for the perturbed three mirror anastigmatic telescope based on nodal aberration theory,” Opt. Express 25, 12867–12883 (2017).
9. V. A. Zverev, I. N. Timoshchuk, and T. V. Tochilina, “Method for designing an optical system for a three-mirror flat-field anastigmat,” J. Opt. Technol. 84(12), 838–842 (2017) [Opt. Zh. 84(12), 56–61 (2017)].
10. V. Zavarzin, I and A. V. Li, “Calculation of the centered reflecting objective with eccentrically located image field,” Vestn. MGTU N. E. Baumana, Ser. Priborostr. 2(107), 103–116 (2016).
11. G. I. Tsukanova, “Classification of three-mirror objectives,” in 31st Internationales Wissenschaftliches Kolloquium (Technische Hochschule Ilmenau, 1986), p. 225.
12. A. V. Bakholdin, K. D. Butylkina, V. N. Vasil’ev, and G. E. Romanova, “Development and analysis of reflective and catadioptric optical systems for Earth remote sensing,” J. Opt. Technol. 84(11), 761–766 (2017) [Opt. Zh. 84(11), 55–61 (2017)].
13. G. Tsukanova, I and K. D. Butylkina, “Fast three-mirror objectives having no intermediate image with convex second and concave third mirrors,” J. Opt. Technol. 81(3), 114–117 (2014) [Opt. Zh. 81(3), 3–7 (2014)].
14. K. D. Butylkina, A. V. Bakholdin, and G. E. Romanova, “Investigating and designing fast three-mirror systems with no intermediate image,” J. Opt. Technol. 83(11), 683–686 (2016) [Opt. Zh. 83(11), 47–50 (2016)].
15. D. S. Volosov, Photographic Optics (Theory, Design Principles, Optical Properties) (Iskusstvo, Moscow, 1978).
16. Zemax 13 Optical Design Program User’s Manual (2015).