DOI: 10.17586/1023-5086-2021-88-09-93-100
УДК: 535, 544, 620
Experimental research on ammonia concentration detection with white light-emitting diodes
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
K. Zhang, H.-B. Lu, L. Shao, C. Zheng, Y.-J. Zhang, and S.-Y. Huang Experimental research on ammonia concentration detection with white light-emitting diodes (Контроль концентрации аммиака с использованием светодиода белого свечения) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 9. С. 93–100. http://doi.org/10.17586/1023-5086-2021-88-09-93-100
K. Zhang, H.-B. Lu, L. Shao, C. Zheng, Y.-J. Zhang, and S.-Y. Huang Experimental research on ammonia concentration detection with white light-emitting diodes (Контроль концентрации аммиака с использованием светодиода белого свечения) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 9. P. 93–100. http://doi.org/10.17586/1023-5086-2021-88-09-93-100
K. Zhang, H.-B. Lu, L. Shao, C. Zheng, Y.-J. Zhang, and S.-Y. Huang, "Experimental research on ammonia concentration detection with white light-emitting diodes," Journal of Optical Technology. 88(9), 548-552 (2021). https://doi.org/10.1364/JOT.88.000548
Ammonia (NH3) is the most abundant alkaline gas in the atmosphere and the cause of the majority of secondary particles in particulate matter PM2.5. The method of ultraviolet spectrum analysis is generally adopted in the traditional ammonia concentration detection with the deuterium or xenon lamp, and its cost is relatively high. In this paper, white light-emitting diodes of a lower cost have been used as the alternative light source.
Then an experimental research on ammonia concentration detection has been carried out and the results have been compared among those using white light-emitting diodes, deuterium and xenon lamps. The results show that under the same experimental conditions, using white light-emitting diodes to measure the ammonia concentration can achieve the same accuracy as that with deuterium or xenon lamps. With this conclusion it can be provided one solution for the light source selection of ammonia concentration detection with low-cost and guaranteed accuracy.
ammonia, concentration detection, white light-emitting diodes, absorbance
Acknowledgements:The research work of this paper is supported by the key research and development project of Anhui Province “Development and application of mid-infrared laser spectral in-situ detector for the ammonia volatilization flux in atmosphere of agricultural source” (201904a07020093) and Open-Ended Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science & Technology (KSZN202001003).
OCIS codes: 250.0250, 010.1290, 020.0020
References:1. Awkash Kumar, Rashmi S. Patil, Anil Kumar Dikshit, Rakesh Kumar. Assessment of spatial ambient concentration of NH3 and its health impact for Mumbai city // Asian J. Atmospheric Environment. 2019. V. 13. № 1. P. 11–19
2. Zhang K., Huang S.Y., Lu H.B., Li F., Shao L. Experimental study of the light source characteristics for the NH3 concentration detection // Optik. 2020. V. 209. № 164608. P. 1–10.
3. Yang L., Li A., Xie P.H., etc. Remote measurement of NO2 concentration at night by DOAS method with LED light source // Spectroscopy and Spectral Analysis. 2019. V. 39 № 05. P. 6-83.8.
4. Mäntele W., Erhan D. UV-VIS absorption spectroscopy: Lambert–Beer reloaded // Spectrochimica Acta. A: Molecular and Biomolecular Spectroscopy. 2017. P. 173.
5. Khlevnoy B.B., Solodilov M.V. Measurement of the spectral irradiance of deuterium lamps in the range of wavelengths 200–400 nm using a high-temperature black body model // Springer US. 2019. V. 61. № 11. P. 1098–1105.
6. Sezer Taha, Altinisik Muhammed, Guler Eray Metin, Kocyigit Abdurrahim, Ozdemir Hakan, Koytak Arif. Evaluation of xenon, light-emitting diode (LED) and halogen light toxicity on cultured retinal pigment epithelial cells // Cutaneous and Ocular Toxicology. 2019. V. 38. № 2. P. 125–130.
7. Shiro Maenaka, Shinichi Tashiro, Murphy A.B., Kazunori Fujita, Manabu Tanaka. Influence of electrode energy balance on gas convective pattern of a high-pressure xenon short arc lamp // Plasma Chemistry and Plasma Proc. 2020. V. 40. P. 819–837.
8. Li W.L., Sun W.F. Analysis of the principle and application characteristics of semiconductor light-emitting diodes // Technology. 2017. V. 15. P. 175.
9. 5mm diameter white LED datasheet // https://wenku.baidu.com/view/914959b30408763231126edb6f1aff00bfd5702a.html
10. Hamamatsu L9456-1 Flashing Xenon Lamp Specification // http://www.hamamatsu.com.cn/UserFiles/DownFile/Product/5W_Xe-F_TLSZ1006E03.pdf
11. D2000 Deuterium Lamp Specification // http://www.wyoptics.com/Optical-Light-Source/17.html
12. Ocean Optics USB4000 Spectrometer Data Sheet // http://www.oceanoptics.cn/system/files/documents/usb4000-oem-data-sheet.pdf
13. Roibu A., Fransen S., Leblebici M.E., Meir G., van Gerven T., Kuhn S. An accessible visible-light actinometer for the  determination of photon flux and optical path length in flow photo microreactors // Scientific Reports. 2018. V. 8. № 5421. P. 56–68.
14. Saes M., Meskers C.G.M., Daffertshofer A., de Munck J.C., Kwakkel G., van Wegen E.E.H. How does upper extremity Fugl–Meyer motor score relate to resting-state EEG in chronic stroke? A power spectral density analysis // Clinical Neurophysiology: Official J. Internat. Federation of Clinical Neurophysiology. 2019. V. 130. № 5. P. 856–862.