DOI: 10.17586/1023-5086-2022-89-01-74-81
УДК: 535.12, 535.343.9, 539.231
Features of determining the optical bandgap of amorphous nanosized composite TiO2:Ag films
Full text on elibrary.ru
Publication in Journal of Optical Technology
Пешая С.Л., Приходько О.Ю., Мухаметкаримов Е.С., Досеке У., Максимова С.Я., Исмайлова Г.А., Тарапеева А.Ю., Турманова К.Н., Кудряшов В.В. Особенности определения оптической ширины запрещенной зоны аморфных наноразмерных композитных пленок TiO2:Ag // Оптический журнал. 2022. Т. 89. № 1. С. 74–81. http://doi.org/10.17586/1023-5086-2022-89-01-74-81
Peshaya S.L., Prikhodko O.Yu., Mukhametkarimov E.S., Doseke U., Maksimova S.Ya., Ismailova G.A., Tarapeeva A.Yu., Turmanova K.N., Kudryashov V.V. Features of determining the optical bandgap of amorphous nanosized composite TiO2:Ag films [in Russian] // Opticheskii Zhurnal.
S. L. Peshaya, O. Yu. Prikhodko, Ye. S. Mukhametkarimov, U. Doseke, S. Ya. Maksimova, G. A. Ismailova, A. Yu. Tarapeeva, K. N. Turmanova, and V. V. Kudryashov, "Features of determining the optical bandgap of amorphous nanosized composite TiO2:Ag films," Journal of Optical Technology. 89(1), 52-57 (2022). https://doi.org/10.1364/JOT.89.000052
The study results of optical properties of amorphous nanosized TiO2:Ag composite films with the structure of an amorphous TiO2 matrix with inclusions of isolated Ag nanoparticles are presented. The TiO2:Ag films were obtained by ion-plasma high-frequency magnetron co-sputtering of a polycrystalline TiO2 and Ag target. The films were 40–50 nm thick, and the maximum silver concentration reached 9.0 at.%. The fundamental absorption band edge was analyzed for different possible absorption laws. It is shown that, in TiO2 and TiO2:Ag films, the edge of the fundamental absorption band is formed mainly due to indirect allowed optical transitions (the quadratic absorption law), and this absorption law does not change with increasing silver concentration. The optical bandgap in TiO2:Ag films depends on the Ag concentration and is determined by the degree of order in the amorphous matrix.
amorphous nanosized TiO2:Ag composite films, ion-plasma co-sputtering, optical properties, bandgap absorption laws, optical bandgap
OCIS codes: 240.6490, 310.6860
References:1. E. Liu, L. Kang, F. Wu, T. Sun, X. Hu, Y. Yang, H. Liu, and J. Fan, “Photocatalytic reduction of CO2 into methanol over Ag/TiO2 nanocomposites enhanced by surface plasmon resonance,” Plasmonics 9, 61–70 (2014).
2. S. Veziroglu, M. Z. Ghori, A.-L. Obermann, K. Röder, O. Polonskyi, T. Strunskus, F. Faupel, and O. C. Aktas, “Ag nanoparticles decorated TiO2 thin films with enhanced photocatalytic activity,” Phys. Status Solidi A 216, 1800898 (2019).
3. K. Usha, P. Kumbhakar, and B. Mondal, “Effect of Ag-doped TiO2 thin film passive layers on the performance of photo-anodes for dye-sensitized solar cells,” Mater. Sci. Semicond. Process. 43, 17–24 (2016).
4. Y. Yu, W. Wen, X.-Y. Qian, J.-B. Liu, and J.-M. Wu, “UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations,” Sci. Rep. 7, 41253 (2017).
5. M. Kulkarni, A. Mazare, E. Gongadze, Š. Perutkova, V. Kralj-Igli ˇc, I. Milošev, P. Schmuki, A. Igli ˇc, and M. Mozeti ˇc, “Titanium nanostructures for biomedical applications,” Nanotechnology 26, 062002 (2015).
6. J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3, 37–46 (1968).
7. H. B. Yao, L. P. Shi, T. C. Chong, P. K. Tan, and X. Miao, “Optical transition of chalcogenide phase-change thin films,” Jpn. J. Appl. Phys. 42, 828–831 (2003).
8. K. Eh. Avdzhyan, V. V. Bunatyan, and A. R. Dashtoyan, “Optical properties of BiFeO3 /BaTiO3 /Ni0.5 Zn0.5 Fe2 O4 films produced by laser pulse deposition,” Izv. - Nats. Akad. Nauk Arm., Fiz. 48(3), 203–207 (2003).
9. K. D. Shukla, S. Sahu, A. Manivannan, and U. P. Deshpande, “Direct evidence for a systematic evolution of optical band gap and local disorder in Ag, Indoped Sb2 Te phase change material,” Phys. Status Solidi RRL 11, 1700273 (2017).
10. A. I. Mashin and A. F. Khokhlov, “Conductivity and absorption edge of amorphous silicyne,” Semicond. 33, 1251–1253 (1999) [Fiz. Tekh. Poluprovodn. 33, 1384–1387 (1999)]
11. V. M. Ievlev, S. B. Kushchev, A. N. Latyshev, L. Y. Leonova, O. Ovchinnikov, M. Smirnov, E. Popova, A. Kostyuchenko, and S. Soldatenko, “Absorption spectra of TiO2 thin films synthesized by the reactive radio-frequency magnetron sputtering of titanium,” Semicond. 48(7), 848–858 (2014) [Fiz. Tekh. Poluprovodn. 48(7), 875–884 (2014)].
12. C. Yang, H. Fan, Y. Xi, J. Chen, and Z. Li, “Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation,” Appl. Surf. Sci. 254, 2685–2689 (2008).
13. M. M. Hasan, A. S. Haseeb, R. Saidur, and H. H. Masjuki, “Effects of annealing treatment on optical properties of anatase TiO2 thin films,” Int. J. Chem. Biol. Eng. 1(2), 92–96 (2008).
14. V. Shymanovska, L. Kernazhitsky, G. Puchkovska, V. Naumov, O. Khalyavka, V. Kshnyakin, S. Kshnyakina, and V. Chernyak, “The impurity ion influence on the optical and photocatalytic properties of anatase and rutile,” J. Nano-Electron. Phys. 3(2), 079–092 (2011).
15. R. Asahi, Y. Taga, W. Mannstadt, and A. Freeman, “Electronic and optical properties of anatase TiO2 ,” Phys. Rev. B 61(11), 7459–7465 (2000).
16. S.-D. Mo and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite,” Phys. Rev. B 51(19), 13023–13032 (1995).
17. R. Zallen and M. P. Moret, “The optical absorption edge of brookite TiO2 ,” Solid State Commun. 137, 154–157 (2006).
18. S. L. Mikhailova, O. Yu. Prikhodko, Ye. S. Mukhametkarimov, K. Dautkhan, U. A. Doseke, S. A. Kozyukhin, V. V. Kozik, G. A. Ismailova, S. Ya. Maksimova, A. Yu. Tarapeyeva, and A. S. Zhakypov, “Thermal stability of the structure and optical properties of nanostructured TiO2 films,” Russ. Phys. J. 63(12), 2045–2051 (2021).
19. E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. (1798–1977) 22, 0903–0922 (1970).
20. O. Prikhodko, N. Manabaev, N. Guseynov, S. Maksimova, S. Mikhailova, and G. Assanov, “Optical properties of diamond-like carbon films modified by platinum,” Adv. Mater. Res. 660, 47–50 (2013).
21. T. Som and B. Karmakar, “Surface plasmon resonance and enhanced fluorescence application of single-step synthesized elliptical nano gold-embedded antimony glass dichroic nanocomposites,” Plasmonics 5(2), 149–159 (2010).
22. N. M. Figueiredo, F. Vaz, L. Cunha, and A. Cavaleiro, “Au-WO3 nanocomposite coatings for localized surface plasmon resonance sensing,” Materials (Basel) 13(246), 246 (2020).
23. M. Torrell, R. C. Adochite, L. Cunha, N. Barradas, E. Alves, M. Beaufort, J. P. Rivière, A. Cavaleiro, S. Dosta, and F. Vaz, “Surface plasmon resonance effect on the optical properties of TiO2 doped by noble metals nanoparticles,” J. Nano Res. 18, 177–185 (2012).
24. S. Thomas, S. K. Nair, E. M. A. Jamal, S. Al-Harthi, M. R. Varma, and M. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology 19, 075710 (2008).
25. O. Prikhodko, N. Manabaev, N. Guseinov, S. Maksimova, E. Muhametkarimov, S. Mikhailova, and E. Daineko, “Plasmon resonance in a-C:H films modified with platinum nanoclusters,” J. Nano-Electron. Phys. 6(3), 03067 (2014).
26. O. Yu. Prikhodko, S. L. Mikhailova, E. C. Mukhametkarimov, S. Ya. Maksimova, N. K. Manabaev, and K. Dauthan, “Optical properties of a-C:H thin films modified by Ti and Ag,” Proc. SPIE 9929, 99291G (2016).
27. V. Garg, B. S. Sengar, V. Awasthi, Aaryashree, P. Sharma, C. Mukherjee, S. Kumar, and S. Mukherjee, “Localized surface plasmon resonance on Au nanoparticles: tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC Adv. 6(31), 26216–26226 (2016).
28. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953).
29. V. R. Akshay, B. Arun, G. Mandal, and M. Vasundhara, “Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO2 nanocrystals derived by a sol–gel method,” Phys. Chem. Chem. Phys. 21, 12991–13004 (2019).