DOI: 10.17586/1023-5086-2022-89-11-17-23
УДК: 535-14
Formation of spatio-frequency modulation in a terahertz pulse generated in an indium arsenide crystal
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Набилкова А.О., Опарин Е.Н., Шумигай В.С., Мельник М.В., Цыпкин А.Н. Формирование пространственно-частотной модуляции в терагерцовом импульсе при его генерации в кристалле арсенида индия// Оптический журнал. 2022. Т. 89. № 11. С. 17–23. http://doi.org/ 10.17586/1023-5086-2022-89-11-17-23
Nabilkova A.O., Oparin E.N., Shumigai V.S., Melnik M.V., Tcypkin A.N. Formation of spatio-frequency modulation in a terahertz pulse generated in an indium arsenide crystal [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 11. P. 17–23. http://doi.org/10.17586/1023-5086-2022-89-11-17-23
A. O. Nabilkova, E. N. Oparin, V. S. Shumigai, M. V. Melnik, and A. N. Tcypkin, "Formation of spatio-frequency modulation in a terahertz pulse generated in an indium arsenide crystal," Journal of Optical Technology. 89(11), 651-655 (2022). https://doi.org/10.1364/JOT.89.000651
Subject of study. Spatio-frequency modulation of a terahertz field generated in a crystal was investigated. Aim of study. The study aimed to theoretically and experimentally analyze the effect of spatio-frequency modulation of one-and-a-half-cycle and multi-cycle pulses in the terahertz spectral range. Method. The spatial distribution of the terahertz field spectrum was measured using time-domain spectroscopy. The process of propagation of radiation of one-and-a-half-cycle and multi-cycle pulses in air was simulated using the angular spectrum method. Main results. The spatial localization features of broadband terahertz radiation during its generation were demonstrated theoretically and experimentally. A spatio-frequency modulation distinctive to few-cycle pulses was revealed, which involves the propagation of high frequencies closer to the beam axis, whereas low frequencies propagate farther from the axis. This effect was observed exclusively for the pulses consisting of a small number of field oscillations. Propagation of multi-cycle pulses is not accompanied with such a modulation. Practical significance. This effect should be considered in the experiments sensitive to the spatial distribution of the terahertz radiation field. Such applications include terahertz imaging, terahertz holography, and the development of commercial and scientific sources of terahertz radiation.
terahertz radiation, terahertz radiation generation, Dember photoeffect, radiation diffraction, spatial-frequency modulation
Acknowledgements:The research was supported by RSF within the grant No. МНК-NSFC (2022).
OCIS codes: 050.1590, 040.2235
References:1. A. Glagolewa-Arkadiewa, “Short electromagnetic waves of wavelength up to 82 microns,” Nature 113(2844), 640 (1924).
2. X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
3. S. A. Kozlov, A. A. Drozdov, S. Choudhary, M. A. Kniazev, and R. W. Boyd, “Suppression of self-focusing for few-cycle pulses,” J. Opt. Soc. Am. B 36(10), G68–G77 (2019).
4. F. Novelli, L. Ruiz Pestana, K. C. Bennett, F. Sebastiani, E. M. Adams, N. Stavrias, T. Ockelmann, A. Colchero, C. Hoberg, G. Schwaab, T. Head-Gordon, and M. Havenith, “Strong anisotropy in liquid water upon librational excitation using terahertz laser fields,” J. Phys. Chem. B 124(24), 4989–5001 (2020).
5. A. Tcypkin, M. Zhukova, M. Melnik, I. Vorontsova, M. Kulya, S. Putilin, S. Kozlov, S. Choudhary, and R. W. Boyd, “Giant third-order nonlinear response of liquids at terahertz frequencies,” Phys. Rev. Appl. 15(5), 54009 (2021).
6. X. Liu, M. Melnik, M. Zhukova, E. Oparin, J. J. P. C. Rodrigues, A. Tcypkin, and S. Kozlov, “Formation of gigahertz pulse train by chirped terahertz pulses interference,” Sci. Rep. 10(1), 9463 (2020).
7. G. Schwaab, F. Sebastiani, and M. Havenith, “Ion hydration and ion pairing as probed by THz spectroscopy,” Angew. Chem. Int. Ed. 58(10), 3000–3013 (2019).
8. G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H. G. Roskos, “Roadmap of terahertz imaging 2021,” Sensors 21(12), 4092 (2021).
9. C. Rønne, L. Thrane, P. O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).
10. P. Rasekh, M. Saliminabi, M. Yildirim, R. W. Boyd, J.-M. Ménard, and K. Dolgaleva, “Propagation of broadband THz pulses: effects of dispersion, diffraction and time-varying nonlinear refraction,” Opt. Express 28(3), 3237–3248 (2020).
11. Y. Xu, X. Fang, S. Fan, L. Zhang, R. Yan, and X. Chen, “Double Gaussian mixture model-based terahertz wave dispersion compensation method using convex optimization technique,” Mech. Syst. Signal Proc. 164, 108223 (2022).
12. A. Nahata and T. F. Heinz, “Reshaping of freely propagating terahertz pulses by diffraction,” IEEE J. Sel. Top. Quantum Electron. 2(3), 701–708 (1996).
13. J. Bromage, S. Radic, G. P. Agrawal, C. R. Stroud, P. M. Fauchet, and R. Sobolewski, “Spatiotemporal shaping of terahertz pulses,” Opt. Photon. News 8(12), 47–48 (1997).
14. G. A. Hine and M. Doleans, “Intrinsic spatial chirp of subcycle terahertz pulsed beams,” Phys. Rev. A 104(3), 032229 (2021).
15. U. Keller, “Linear pulse propagation,” in Ultrafast Lasers (Springer, Cham, 2021).
16. I. Nevinskas, K. Vizbaras, A. Trink ¯unas, R. Butkut ˙e, and A. Krotkus, “Terahertz pulse generation from (111)-cut InSb and InAs crystals when illuminated by 155-μm femtosecond laser pulses,” Opt. Lett. 42(13), 2615–2618 (2017).