DOI: 10.17586/1023-5086-2022-89-11-54-60
УДК: 621.315.592, 621.383.523
Avalanche photodiodes based on InAlAs/InGaAs heterostructures with sulfide–polyamide passivation of mesa structures
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Малеев Н.А., Кузьменков А.Г., Кулагина М.М., Гусева Ю.А., Васильев А.П., Блохин С.А., Бобров М.А., Трошков С.И., Андрюшкин В.В., Колодезный Е.С., Бугров В.Е., Устинов В.М. Лавинные фотодиоды на гетероструктурах InAlAs/InGaAs с сульфидно-полиамидной пассивацией меза-структуры // Оптический журнал. 2022. Т. 89. № 11. С. 54–60. http://doi.org/10.17586/1023-5086-2022-89-11-54-60
Maleev N.A., Kuzmenkov A.G., Kulagina M.M., Guseva Yu.A., Vasiljev A.P., Blokhin S.A., Bobrov M.A., Troshkov S.I., Andryushkin V.V., Kolodeznyi E.S., Bougrov V.E., Ustinov V.M. Avalanche photodiodes based on InAlAs/InGaAs heterostructures with sulfide–polyamide passivation of mesa structures [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 11. P. 54–60. http://doi.org/10.17586/1023-5086-2022-89-11-54-60
N. A. Maleev, A. G. Kuzmenkov, M. M. Kulagina, Yu. A. Guseva, A. P. Vasil’ev, S. A. Blokhin, M. A. Bobrov, S. I. Troshkov, V. V. Andryushkin, E. S. Kolodeznyi, V. E. Bougrov, and V. M. Ustinov, "Avalanche photodiodes based on InAlAs/InGaAs heterostructures with sulfide–polyamide passivation of mesa structures," Journal of Optical Technology. 89(11), 677-680 (2022). https://doi.org/10.1364/JOT.89.000677
Subject of study. A method for the sulfide–polyamide surface passivation of mesa structures of InAlAs/InGaAs avalanche photodiodes was considered and the static properties of the fabricated crystals of InAlAs/InGaAs avalanche photodiodes were investigated. Aim of study. The study aimed to investigate the effect of sulfide–polyamide surface passivation of mesa structures on the principal parameters of an avalanche photodiode. Method. Sulfide–polyamide surface passivation of a mesa structure entails processing the surface in an aqueous solution of ammonium sulfide followed by the application of a protective layer of AD-9103-30 polyamide. Main results. Avalanche photodiodes based on InAlAs/InGaAs heterostructures were fabricated and investigated. The surface of the mesa structure of avalanche photodiodes underwent sulfide–polyamide passivation. Crystals of avalanche photodiodes with an active area diameter of 32 µm reproducibly ensured a dark current of 10–20 nA under an applied voltage of 0.9 of the breakdown voltage, uniform distribution of the breakdown voltage value across the sample area, and the long-term stability of parameters. Spectral sensitivity values of the devices in the 1550 nm region were 0.85–0.88 A/W, and their capacitance values were 0.11–0.12 pF. Ensuring the reproducibility and long-term stability of parameters is crucial to passivation technology. Parameter measurements of the avalanche photodiode crystals with sulfide–polyamide passivation performed with a 6-month interval confirmed the temporal stability of the dark current at the level of 5%. Practical significance. The proposed method for the surface passivation of the mesa structure of InAlAs/InGaAs avalanche photodiodes entailing processing in an aqueous solution of ammonium sulfide followed by the application of a protective layer of AD-9103-30 polyamide can be used to fabricate avalanche photodiodes with a reproducible low level of dark current.
heterostructure, avalanche photodiode, passivation, mesastructure
Acknowledgements:The research was supported by the Ministry of science and higher education of the Russian Federation, project No. 2019-1442.
OCIS codes: 250.1345, 130.5990
References:1. Y. L. Goh, A. R. J. Marshal, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52 Al0.48 As,” IEEE J. Quantum Electron. 43(5–6), 503–507 (2007).
2. L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature dependence of avalanche breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
3. O. S. Abdulwahid, J. Sexton, I. Kostakis, K. Ian, and M. Missous, “Physical modelling and experimental characterisation of InAlAs/InGaAs avalanche photodiode for 10 Gb/s data rates and higher,” IET Optoelectron. 12(1), 5–10 (2018).
4. J. J. S. Huang, H. S. Chang, Y. H. Jan, H. S. Chen, C. J. Ni, E. Chou, S. K. Lee, and J.-W. Shi, “Highly reliable, cost-effective and temperature-stable top-illuminated avalanche photodiode (APD) for 100G inter-datacenter ER4-lite applications,” in Proceedings of the 6th International Conference on Photonics, Optics and Laser Technology (2018), pp. 119–124.
5. Y. Ma, Y. Zhang, Y. Gu, X. Chen, Y. Shi, W. Ji, S. Xi, B. Du, X. Li, H. Tang, Y. Li, and J. Fang, “Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors,” Opt. Express 24(7), 7823–7834 (2016).
6. Y. Zhou, X. Ji, M. Shi, H. Tang, X. Shao, X. Li, H. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118(3), 034507 (2015).
7. J. J. Liu, W. J. Ho, J. Y. Chen, J.-N. Lin, C.-J. Teng, C.-C. Yu, Y.-C. Li, and M.-J. Chang, “The fabrication and characterization of InAlAs/InGaAs APDs based on a mesa-structure with polyimide passivation,” Sensors 19(15), 3399 (2019).
8. Y. Yuan, Y. Li, J. Abell, J. Y. Zheng, K. Sun, C. Pinzone, and J. C. Campbell, “Triple-mesa avalanche photodiodes with very low surface dark current,” Opt. Express 27(16), 22923–22929 (2019).
9. B. Li, Q.-Q. Lv, R. Cui, W.-H. Yin, X.-H. Yang, and Q. Han, “A low dark current mesa-type InGaAs/InAlAs avalanche photodiode,” IEEE Photon. Technol. Lett. 27(1), 34–37 (2014).
10. M. R. Ravi, A. DasGupta, and N. DasGupta, “Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment,” J. Cryst. Growth 268(3–4), 359–363 (2004).
11. D. Sheela and N. DasGupta, “Optimization of surface passivation for InGaAs/InP PIN photodetectors using ammonium sulfide,” Semicond. Sci. Technol. 23(3), 035018 (2008).
12. J. Chen, Z. Zhang, M. Zhu, J. Xu, and X. Li, “Optimization of InGaAs/InAlAs avalanche photodiodes,” Nanoscale Res. Lett. 12(1), 33 (2017).
13. C. Liu, H.-F. Ye, and Y.-L. Shi, “Advances in near-infrared avalanche diode single-photon detectors,” Chip 1(1), 5 (2022).
14. Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, and D. E. Ackley, “A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction,” J. Lightwave Technol. 10(2), 182–193 (1992).
15. N. A. Maleev, A. G. Kuz’menkov, M. M. Kulagina, A. P. Vasil’ev, S. A. Blokhin, S. I. Troshkov, A. V. Nashchekin, M. A. Bobrov, A. A. Blokhin, K. O. Voropaev, V. E. Bugrov, and V. M. Ustinov, “Mushroom mesa structure for InAlAs/InGaAs avalanche photodiodes,” Pis’ma Zh. Tekh. Fiz. 47 (21), 36–38 (2021).
16. X. G. Zheng, J. S. Hsu, J. B. Hurst, X. Li, S. Wang, X. Sun, A. L. Holmes, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “Long-wavelength In0.53 /Ga0.47 /As-In0.52 /Al0.48 /As large-area avalanche photodiodes and arrays,” IEEE J. Quantum Electron. 40(8), 1068–1073 (2004).
17. X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).