ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-12-13-18

УДК: 53.082.53, 681.785.24

Measurement of the refractive index using a goniometric system in an automated mode

For Russian citation (Opticheskii Zhurnal):

Юрин А.И., Вишняков Г.Н., Минаев В.Л. Измерение показателя преломления с помощью гониометрической системы в автоматизированном режиме // Оптический журнал. 2022. Т. 89. № 12. С. 13–18. http://doi.org/ 10.17586/1023-5086-2022-89-12-13-18

 

Yurin A.I., Vishnyakov G.N., Minaev V.L. Measurement of the refractive index using a goniometric system in an automated mode [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 12. P. 13–18. http://doi.org/ 10.17586/1023-5086-2022-89-12-13-18 

For citation (Journal of Optical Technology):

A. I. Yurin, G. N. Vishnyakov, and V. L. Minaev, "Measurement of the refractive index using a goniometric system in an automated mode," Journal of Optical Technology. 89(12), 704-707 (2022). https://doi.org/10.1364/JOT.89.000704

Abstract:

Subject of study. A method for the measurement of the refractive index using an automated autocollimating goniometric system is proposed. Aim of study. The study facilitates the precise measurement of the refractive indices of transparent solid and liquid optical materials. Method. Goniometric methods based on the measurement of angles of light refraction caused by a substance are often used to measure the refractive indices of trihedral prisms. A method to determine the refractive index via measuring the light deviation angle caused by a prism after reflection from the internal facet in the automated mode is proposed. Main results. The refractive indices of two trihedral prisms composed of different glass types, namely, N-BK7 and SF-1, measured using the proposed method and autocollimating goniometric system are presented. The measurement error did not exceed 1.5×10−4 when compared with the nominal value for these prisms at the wavelength of the radiation source of the autocollimator, thus confirming the prospect of application of this method in high-precision refractive index measurements. Practical significance. The method proposed in this study can be used to measure the refractive indices of trihedral prisms made of optically transparent materials with different apex angles using the goniometric system in an automated mode. The method can also be applied to optically transparent liquid materials located in a hollow trihedral prism.

Keywords:

goniometer, refractive index, refractometry, measurement automation

OCIS codes: 120.4640, 120.3930

References:

1. L. A. Konopel’ko, Refractometric Methods for Physical–Chemical Measurements (Triumf, Moscow, 2020).
2. L. W. Tilton, “Prism refractometry and certain goniometrical requirements for precision,” Bur. Stand. J. Res. 2(5), 909–930 (1929).
3. “Optics and photonics—Test method for refractive index of optical glasses. Part 1: Minimum deviation method,” ISO 21395-1:2020.
4. G. N. Vishnyakov, G. G. Levin, S. V. Kornysheva, G. N. Zyuzev, M. B. Lyudomirskii, P. A. Pavlov, and Yu. V. Filatov, “Measuring the refractive index on a goniometer in the dynamic regime,” J. Opt. Technol. 72(12), 929–933 (2005) [Opt. Zh. 72(12), 53–58 (2005)].
5. A. I. Yurin, G. N. Vishnyakov, and V. L. Minaev, “Refractive index measurement using a modified Littrow–Abbe method,” J. Opt. Technol. 89(11), 666–669 (2022) [Opt. Zh. 89(11), 39–43 (2022)].
6. M. Born and E. Wolf, Fundamentals of Optics (Nauka, Moscow, 1973).
7. M. V. Leikin, B. I. Molochnikov, V. N. Morozov, and E. S. Shakaryan, Reflective Refractometry (Mashinostroenie, Leningrad, 1983).
8. B. V. Ioffe, Refractometric Methods for Chemistry (Khimiya, Leningrad, 1974).
9. B. Edlén, “The refractive index of air,” Metrologia 2(2), 71–80 (1966).

10. “Optical colorless glass. Physical and chemical parameters. Main parameters,” GOST 13659-78.
11. Inertech LLC, “Optical measuring instruments,” http://inertech-ltd.com. Research Article Vol. 89, No. 12 / December 2022 / Journal of Optical Technology 707
12. G. N. Vishnyakov, G. G. Levin, and S. V. Kornysheva, “The state primary standard for the unit of refractive index,” Meas. Tech. 47(11), 1039–1043 (2004).
13. G. N. Vishnyakov, A. Fricke, N. M. Parkhomenko, Y. Hori, and M. Pisani, “Report on supplementary comparison COOMET.PR-S3: refractive index,” Metrologia 53(1A), 02001 (2016).
14. Hamamatsu Photonics K.K., “Product catalog,” https://www.hamamatsu.com/eu/en/product/optical-sensors/spectrometers/mini-spectrometer/C10083CA.html.
15. W. Sellmeier, “Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rück-wirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien (II. Theil),” Ann. Phys. Chem. 223(11), 386–403 (1872).
16. “State system for ensuring uniformity of measurements. Normal conditions for linear and angular measurements,” GOST 8.050-73.