DOI: 10.17586/1023-5086-2022-89-12-38-45
Quantum properties of triple-coupled optical cavity with injection of a squeezed vacuum field
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ke Di, Jie Ren, Wei Cui, RenPu Li, YongLe Lu, JunQi Guo, Yu Liu, JiaJia Du. Квантовые свойства оптического резонатора с тройной связью и инжекцией сжатого вакуумного поля. Quantum properties of triple-coupled optical cavity with injection of a squeezed vacuum field [на англ. яз.] // Оптический журнал. 2022. Т. 89. № 12. С. 38–45. http://doi.org/ 10.17586/1023-5086-2022-89-12-38-45
Ke Di, Jie Ren, Wei Cui, RenPu Li, YongLe Lu, JunQi Guo, Yu Liu, JiaJia Du. Квантовые свойства оптического резонатора с тройной связью и инжекцией сжатого вакуумного поля. Quantum properties of triple-coupled optical cavity with injection of a squeezed vacuum field [in English] // Opticheskii Zhurnal. 2022. V. 89. № 12. P. 38–45. http://doi.org/ 10.17586/1023-5086-2022-89-12-38-45
Ke Di, Jie Ren, Wei Cui, RenPu Li, YongLe Lu, JunQi Guo, Yu Liu, and JiaJia Du, "Quantum properties of a triple-coupled optical cavity with injection of a squeezed vacuum field," Journal of Optical Technology. 89(12), 722-727 (2022). https://doi.org/10.1364/JOT.89.000722
Subject of Study. A scheme of quantum manipulation in coupled optical cavity system composed of triple-coupled optical cavity with injection of a squeezed vacuum field is proposed. Method. The scheme of quantum manipulation in coupled optical cavity system is based on analysis of the absorption and dispersion characteristics of the reflection in classical filed and quantum field. Main Results. It was established that the absorption and dispersion of the reflection field with different coupled intensities under the classical field show different characteristics. The Electromagnetic induction transparency like effect is observed as the couple dintensities increases, and becomes more and more obvious as the coupled intensities increases, until the absorption curve becomes completely independent due to the strong coupled. And the quantum noise fluctuation corresponding to the amplitude and phase of the reflection field in the quantum field also presented different characteristics. With the increase of couple dintensities, the quantum noise fluctuation curve begins to split. And at the same time, the splitting of the quantum noise fluctuation curve changes from one to three, and it completely splits into three Lorentz curves finally. Practical significance. The theoretical results of scheme demonstrated that multiple (three times) quantum manipulation can be implemented simultaneously in a device, which provides method for the quantum dense coding.
quantum manipulation, quantum coding, triple-coupled optical cavity, squeezed vacuum field
Acknowledgements:The National Natural Science Foundation of China (Nos. 11704053, 52175531); the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201800629); the Innovation Leader Talent Project of Chongqing Science and Technology (No. CSTC-CXLJRC201711).
OCIS codes: 270.5585, 190.4970
References:1. Taylor J.M. A quantum future awaits // Science. 2018 V. 361. № 6400. P. 313.
2. Bayliss S.L, Laorenza D.W, Mintun P.J, Kovos B.D, Freedman D.E, Awschalom D.D. Optically addressable molecular spins for quantum information processing // Science. 2020 V. 370. № 6522. P. 1309–1312.
3. Julio T. Barreiro, Dieter Meschede, Eugene Polzik, E. Arimondo, Fabrizio Illuminati, Luigi Lugiato. Atoms, photons and entanglement for quantum information technologies // Procedia Computer Science. 2011 V. 7. P. 52–55.
4. David P. Divincenzo. Quantum Computation // Science. 1995. V. 270. № 5234. P. 255–261.
5. Stefanie Barz, Elham Kashefi, Anne Broadbent, Joseph F. Fitzsimons, Anton Zeilinger, Philip Walther. Demonstration of blind quantum computing // Science. 2012. V. 335. № 6066. P. 303–308.
6. Olmschenk S., Matsukevich D.N., Maunz P., Hayes D., Duan L.M., Monroe C. Quantum teleportation between distant matter qubits // Science. 2009 V. 323. № 5913. P. 486–489.
7. Arrazola J.M., Scarani V. Covert quantum communication // Phys. Rev. Lett. 2016. V. 117. 250503.
8. Fowler A.G., Wang D.S., Hill Ch.D., Ladd T.D., Van Meter R., Hollenberg L.C.L. Surface code quantum communication // Phys. Rev. Lett. 2010. V. 104. 180503.
9. S.J. van Enk. Quantum communication, reference frames, and gauge theory // Phys. Rev. A. 2006. V. 73. 042306.
10. Horodecki R., Horodecki P., Horodecki M., Horodecki K. Quantum entanglement // Rev. Mod. Phys. 2009. V. 81. 865.
11. Song J, Zhang Z.J., Xia Y, Sun X.D., Jiang Y.Y. Fast coherent manipulation of quantum states in open systems // Opt. Express. 2016 V. 24. № 19. P. 21674–21683.
12. Wang L.Y., Hu J.G., Du J.J., Di K. Broadband coherent perfect absorption by cavity coupled to three-level atoms in linear and nonlinear regimes // New J. Phys. 2021. V. 23. 123040.
13. Du S.P., Bai Z.F, Qi X.F. Coherence manipulation under incoherent operations // Phys. Rev. A. 2019. V. 100. 032313.
14. Rohde P.P., Ralph T.C., Nielsen M.A. Optimal photons for quantum-information processing // Phys. Rev. A. 2005. V. 72. 052332.
15. Rips S., Hartmann M.J. Quantum information processing with nanomechanical qubits // Phys. Rev. Lett. 2013. V. 110. 120503.
16. Boykin P.O., Vwani Roychowdhury. Optimal encryption of quantum bits // Phys. Rev. A. 2003. V. 67. 042317.
17. Stannigel K., Komar P., Habraken S.J.M., Bennett S.D., Lukin M.D., Zoller P., Rabl P. Optomechanical quantum information processing with photons and phonons // Phys. Rev. Lett. 2012. V. 109. 013603.
18. Saleh Rahimi-Keshari, Artur Scherer, Ady Mann, Rezakhani A.T, Lvovsky A.I., Sanders B.C. Quantum process tomography with coherent states // New J. Phys. 2011. V. 13. 013006.
19. Xing Z.C., Hong Y.F., Zhang B. The influence of dichroic beam splitter on the airborne multiband coaperture optical system // Optoelectronics Letters. 2018. V. 14. № 4. P. 250–256.
20. Cosmo Lupo, Vittorio Giovannetti, Stefano Pirandola, Stefano Mancini and Seth Lloyd. Capacities of linear quantum optical systems // Phys. Rev. A. 2012. V. 85. 062314.
21. Mostafa Ghorbanzadeh, Sara Darbari. Efficient plasmonic 2D arrangement and manipulation system, suitable for controlling particle–particle interactions // Opt. Lett. 2019. V. 37. № 9. P. 2058–2064.
22. Bakholdin A.V., Butylkina (Rodionova) K.D., Vasil’ev V.N., Romanova G.É. Development and analysis of reflective and catadioptric optical systems for Earth remote sensing // Journal of Optical Technology. 2017. V. 84. № 11. P. 761–766.
23. Ou Z.Y., Pereira S.F., Kimble H.J., Peng K.C. Realization of the Einstein–Podolsky–Rosen paradox for continuous variables // Phys. Rev. Lett. 2019. V. 68. 3663.
24. Lawrence M.J., Byer R.L., Fejer M.M., Bowen W., Lam P.K., Bachor H.-A. Squeezed singly resonant secondharmonic generation in periodically poled lithium niobat // J. Opt. Soc. Am. B. 2002. V. 19. № 7. P. 1592–1598.