ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-02-11-17

УДК: 535.4

Design of metal-dielectric interference coatings

For Russian citation (Opticheskii Zhurnal):

Голдина Н.Д. Проектирование металл-диэлектрических интерференционных покрытий // Оптический журнал. 2022. Т. 89. № 2. С. 11–17. http://doi.org/10.17586/1023-5086-2022-89-02-11-17

 

Goldina N.D. Design of metal-dielectric interference coatings [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 2. P. 11–17. http://doi.org/10.17586/1023-5086-2022-89-02-11-17

For citation (Journal of Optical Technology):

N. D. Goldina, "Design of metal-dielectric interference coatings," Journal of Optical Technology. 89(2), 71-75 (2022). https://doi.org/10.1364/JOT.89.000071

Abstract:

Subject of study. Multilayer structures comprising a thin metal layer facilitate the creation of new optical schemes for spectroscopy (selectors for laser cavities, multibeam reflection interferometers, and interference filters with thin absorbing layers). Method. Methods for the calculation of complex optical coatings are constantly improved. The novelty of this work is the design of a stacked structure with a thin metal layer when a conductive surface model is used to mathematically describe the properties of this layer. Results. This work presents numerical modeling of several multilayer metal-dielectric structures. A graphical method for designing an asymmetric front mirror of a reflection interferometer that uses circular charts of a complex reflection coefficient ensures visual clarity when searching for an optimal solution. The proposed multilayer structure with thin metal films placed at the layer boundaries ensures effective suppression of the reflected light with wavelengths different from the selected one. A narrow extrema (maxima and minima) transformation in the spectral or angular dependences of the reflection coefficient is shown to occur in the case of the oblique incidence of s-polarized light on the multibeam reflection interferometer and the variation of the “gap” thickness. It is established that, if a thin metal film is added to the front mirror, narrow bright fringes of reflected light can be obtained in a scheme with a Fabry-Perot interferometer in addition to the fringes in transmitted light. Practical significance. The obtained results can be applied to spectroscopy.

Keywords:

interferometers and filters in reflected light, thin metal layer, polarized light

Acknowledgements:

The research was conducted with the financial support of the Russian research program "Optics. Laser physics".

Financing was provided from the budget within the Research, development and technological work No. АААА-А17- 117030310290-5.

OCIS codes: 310.1620, 300.0300

References:

1. N. D. Goldina, Thin-Film Coatings for Laser Optics (Akademizdat, Novosibirsk, 2018).
2. Yu. V. Troitskii, Multiple Beam Interferometers in Reflected Light (Nauka, Novosibirsk, 1985).
3. P. W. Smith, “Mode selection in lasers,” Proc. IEEE 60, 422–440 (1972).
4. G. V. Rozenberg, Optics of Thin-Film Coatings (Fizmatgiz, Moscow, 1958).
5. H. A. Macleod, Thin-Film Optical Filters (Taylor & Francis, New York, 2010).
6. P. W. Baumeister, Optical Coating Technology (SPIE Press, Bellingham, Washington, 2004).
7. E. N. Kotlikov, “Narrow-band interference filters with absorbing films,” J. Opt. Technol. 88(6), 321–322 (2021) [Opt. Zh. 88(6), 45–47 (2021)].
8. J. A. Dobrowolski, L. Li, and R. A. Kemp, “Metal-dielectric transmission interference filters with low reflectance,” Appl. Opt. 34(25), 5673–5682 (1995).
9. J. Hennesy, A. Jewell, M. Hoenk, and S. Nikzad, “Metal-dielectric filters for solar-blind silicon ultraviolet detectors,” Appl. Opt. 54(11), 3507–3512 (2015).
10. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009).
11. A. S. Kabanov, “Progressive methods of calculation and application of complex coatings,” Fotonika 12(8), 788–792 (2018).
12. A. V. Tikhonravov and A. Thelen, “Optical coating design algorithm based on the equivalent layer theory,” Appl. Opt. 45(7), 1530–1538 (2006).
13. T. Wakamatsu and K. Saito, “Interpretation of attenuated-total-reflection dips observed in surface plasmon resonance,” J. Opt. Soc. Am. B 24(9), 2307–2313 (2007).
14. A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett. 37(7), 1175–1177 (2012).
15. V. S. Terent’ev and V. A. Simonov, “Analytical description of the spectral characteristics of a refractive index sensor based on a reflection interferometer,” Opt. Spectrosc. 129(8), 1179–1186 (2021) [Opt. Spectrosc. 129(8), 1089–1096 (2021)].
16. N. D. Goldina, “Design of metal-dielectric filters in transmitted ultraviolet light,” Optoelectron. Instrument. Proc. 55(6), 550–553 (2019) [Avtometriya 55(6), 21–24 (2019)].
17. N. D. Goldina, “Transformation of the optical characteristics of the reflecting interferometer in polarized light,” Optoelectron. Instrument. Proc. 57(2), 220–223 (2021) [Avtometriya 57(2), 122–126 (2021)].