ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-04-80-90

УДК: 535.343.4+616-006.04

Application of a high-resolution terahertz gas spectroscopy method to compositional analysis of thermal decomposition products of human fluids (urine)

For Russian citation (Opticheskii Zhurnal):

Вакс В.Л., Домрачева Е.Г., Черняева М.Б., Анфертьев В.А., Масленникова А.В., Железняк А.В., Князева Т.Д., Родионов М.А., Майоров А.И. Применение метода терагерцовой газовой спектроскопии высокого разрешения для анализа состава продуктов термического разложения биологических жидкостей (урины) человека // Оптический журнал. 2022. Т. 89. № 4. С. 80–90. http://doi.org/ 10.17586/1023-5086-2022-89-04-80-90

 

Vaks V.L., Domracheva E.G., Chernyaeva M.B., Anfertev V.A. , Maslennikova A.V., Zheleznyak A.V.,  Knyazeva T.D., Rodionov M.A.,  Maiorov A.I. Application of a high-resolution terahertz gas spectroscopy method to compositional analysis of thermal decomposition products of human fluids (urine) [in Russian] // Opticheskii Zhurnal. 2022. V.89. № 4. P. 80-90. http://doi.org/10.17586/1023-5086-2022-89-04-80-90.

For citation (Journal of Optical Technology):

V. L. Vaks, E. G. Domracheva, M. B. Chernyaeva, V. A. Anfertev, A. V. Maslennikova, A. V. Zheleznyak, T. D. Knyazeva, M. A. Rodionov, and A. I. Maiorov, "Application of a high-resolution terahertz gas spectroscopy method to compositional analysis of thermal decomposition products of human fluids (urine)," Journal of Optical Technology. 89(4), 243-249 (2022). https://doi.org/10.1364/JOT.89.000243

Abstract:

Subject of study. In this study, the compositions of thermal decomposition products of samples of human fluids (urine) of cancer patients obtained before and after chemotherapy were investigated to identify the markers reflecting the influence of platinum-based chemotherapy, including its nephrotoxic influence, on the human body. Method. Molecular absorption spectroscopy, including nonstationary spectroscopy in the terahertz frequency range, is a prospective approach to investigation of multicomponent gas mixtures of different origins, including those of biological origin. The rotational spectrum lines and low-frequency vibrational spectra of molecules are in the terahertz frequency range (0.100–10 THz). When radiation transmitted through a gaseous sample is detected, the absorption lines, which are a unique characteristic of specific substances, are recorded in the spectrum. These absorption lines indicate the presence of the corresponding substances in the investigated multicomponent gas mixture; thus, this technique allows the identification of potential markers for pathologies and diseases as well as markers characterizing the effects of various exposure types on the human body, including the effect of drugs. Main results. A complex of metabolites resulting from the thermal decomposition of the sample was identified. The contents of gaseous thermal decomposition products of urine obtained from sick and conditionally healthy volunteers were compared. In addition, the contents of thermal decomposition products of urine obtained from the cancer patients before and after chemotherapy were compared. Practical significance. The proposed approach is advantageous for the development of a noninvasive investigation method that facilitates the assessment of chemotherapy effects on the human body.

Keywords:

high-resolution spectroscopy, terahertz frequency range, metabolites, urine, platinum-containing chemotherapy

Acknowledgements:
work on the development and implementation of a spectrometer with rapid frequency transmission was carried out at the expense of a grant from the Russian Scientific Foundation No. 21-19-00357, https://rscf.ru/project/21-19-00357/; studies of the composition of thermal decomposition products of urina samples of conditionally healthy volunteers and oncological patients before and after chemotherapy were carried out at the expense of a grant from the Russian Scientific Foundation No. 21-72-30020, https://rscf.ru/project/21-72-30020/.

OCIS codes: 300.6495, 300.6390, 300.6320, 170.1470

References:
1. A. Amann, B. de Lacy Costello, M. Miekisch, J. Schubert, B. Buszewski, J. Pleil, N. Ratcliffe, and T. Risby, “The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva,” J. Breath Res. 8, 034001 (2014). 2. B. de Lacy Costello, A. Amann, H. Al-Kateb, C. Flynn, W. Filipiak, T. Khalid, D. Osborne, and N. M. Ratcliffe, “A review of the volatiles from the healthy human body,” J. Breath Res. 8, 014001 (2014). 3. V. Vaks, E. Domracheva, M. Chernyaeva, A. Maslennikova, S. Pripolzin, V. Anfertev, and A. Yablokov, “Application of THz fast Research Article Vol. 89, No. 4 / April 2022 / Journal of Optical Technology 249 frequency sweep spectrometer for investigation of chemical composition of blood,” J. Infrared, Millimeter, Terahertz Waves 41, 1114–1120 (2020). 4. A. A. Lykina, M. M. Nazarov, M. R. Konnikova, I. A. Mustafin, V. L. Vaks, V. A. Anfertev, E. G. Domracheva, M. B. Chernyaeva, Y. V. Kistenev, D. A. Vrazhnov, V. V. Prischepa, Y. A. Kononova, D. V. Korolev, O. P. Cherkasova, A. P. Shkurinov, A. Y. Babenko, and O. A. Smolyanskaya, “Terahertz spectroscopy of diabetic and nondiabetic human blood plasma pellets,” J. Biomed. Opt. 26(4), 043006 (2021). 5. A. A. Lykina, V. A. Anfertev, E. G. Domracheva, M. B. Chernyaeva, Y. A. Kononova, Y. Toporova, D. V. Korolev, O. A. Smolyanskaya, and V. L. Vaks, “Terahertz high-resolution spectroscopy of thermal decomposition gas products of diabetic and non-diabetic blood plasma and kidney tissue pellets,” J. Biomed. Opt. 26(4), 043008 (2021). 6. Y. Gao, “Roadmap to the urine biomarker era,” MOJ Proteomics Bioinform. 1(1), 00005 (2014). 7. Yu. V. Kistenev, A. V. Teteneva, T. V. Sorokina, A. I. Knyazkova, O. A. Zakharova, A. Cuisset, V. L. Vaks, E. G. Domracheva, M. B. Chernyaeva, V. A. Anfert’ev, E. S. Sim, I. Yu. Yanina, V. V. Tuchin, and A. V. Borisov, “Diagnosis of diabetes based on analysis of exhaled air by terahertz spectroscopy and machine learning,” Opt. Spectrosc. 128(6), 809–814 (2020) [Opt. Spektrosk. 128(6), 805–810 (2020)]. 8. P. Mochalski and K. Unterkofler, “Quantification of selected volatile organic compounds in human urine by gas chromatography selective reagent ionization time of flight mass spectrometry (GC-SRI-TOF-MS) coupled with headspace solid-phase microextraction (HS-SPME),” Analyst 141, 4796–4803 (2016). 9. Q. Gao, X. Su, M. H. Annabi, B. R. Schreiter, T. Prince, A. Ackerman, S. Morgas, V. Mata, H. Williams, and W.-Y. Lee, “Application of urinary volatile organic compounds (VOCs) for the diagnosis of prostate cancer,” Clin. Genitourin. Cancer 17(3), 183–190 (2019). 10. Zh. Wang and Ch. Wang, “Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements,” J. Breath Res. 7, 037109 (2013). 11. V. L. Vaks, V. A. Anfertev, V. Y. Balakirev, S. A. Basov, E. G. Domracheva, A. V. Illyuk, P. V. Kupriyanov, S. I. Pripolzin, and M. B. Chernyaeva, “High resolution terahertz spectroscopy for analytical applications,” Phys.-Usp. 63(7), 708–720 (2020) [Usp. Fiz. Nauk 63(7), 765–776 (2020)]. 12. V. V. Khodos, D. A. Ryndyk, and V. L. Vaks, “Fast passage microwave molecular spectroscopy with frequency sweeping,” Eur. Phys. J.: Appl. Phys. 25, 203–208 (2004). 13. H. M. Pickett, E. A. Cohen, B. J. Drouin, and J. C. Pearson, “Submillimeter, millimeter, and microwave spectral line catalog,” JPL Molecular Spectroscopy (California Institute of Technology, 2003), http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html. 14. C. P. Endres, S. Schlemmer, P. Schilke, J. Stutzki, and H. S. P. Müller, “The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC,” J. Mol. Spectrosc. 327, 95–104 (2016). 15. V. A. Yablokov, Ya. A. Vasina, I. A. Zelyaev, and S. V. Mitrofanova, “Kinetics of thermal decomposition of sulfur-containing amino acids,” Russ. J. Gen. Chem. 79(6), 1141–1145 (2009). 16. S. Kh. Al-Shukri, E. T. Goloschapov, Yu. V. Emanuel, and M. I. Gobachev, “Tamm–Horsfall protein—potential marker of the early stages of urolithiasis and stone recurrence,” Urol. Vedomosti II(1), 26–28 (2012). 17. A. V. Papayan and N. A. Lisovaya, “Role of Tamm-Horsfall protein in renal diseases,” Nefrologiya 6(3), 28–36 (2002). 18. T.-H. Wu, K.-J. Li, C.-L. Yu, and C.-Y. Tsai, “Tamm–Horsfall protein is a potent immunomodulatory molecule and a disease biomarker in the urinary system,” Molecules 23, 200 (2018).