ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-09-36-48

УДК: 681.78, 343.77

Dual-band optoelectronic poaching detection systems

For Russian citation (Opticheskii Zhurnal):

Маркушин Г.Н., Коротаев В.В., Кошелев А.В., Самохина И.А., Васильев А.С., Тимофеев А.Н., Васильева А.В., Ярышев С. Н. Двухдиапазонные оптико-электронные системы обнаружения субъектов браконьерского промысла // Оптический журнал. 2022. Т. 89. № 9. С. 36–48. http://doi.org/ 10.17586/1023-5086-2022-89-09-36-48

 

Markushin G.N., Korotaev V.V., Koshelev A.V., Samokhina I.A., Vasilev A.S., Timofeev A.N., Vasileva A.V., Yaryshev S.N. Dual-band optoelectronic poaching detection systems [in Russian] // Opticheskii Zhurnal. 2022. V.89. № 9. P. 36-48. http://doi.org/ 10.17586/1023-5086-2022-89-09-36-48

For citation (Journal of Optical Technology):

G. N. Markushin, V. V. Korotaev, A. V. Koshelev, I. A. Samokhina, A. S. Vasilev, A. N. Timofeev, A. V. Vasileva, and S. N. Yaryshev, "Dual-band optoelectronic poaching detection systems," Journal of Optical Technology. 89(9), 528-536 (2022). https://doi.org/10.1364/JOT.89.000528

Abstract:

Subject of study. We present details regarding the development of dual-band optoelectronic scanning systems for surveillance and detection of poachers and poaching equipment and the inclusion of image fusion and geolocation capabilities. Aim. We present research on a dual-band optoelectronic system for scanning the surface along a quasicircular trajectory that supports overlapping of frames for efficient fusion of images made from different points of view into a single image used to detect, recognize, and geolocate poaching. Methods. We present simulation and experimental study of a prototype system including television and thermal vision channels, a Global Positioning System (GPS) antenna, and inertial navigation system modules mounted on a stabilized common platform. Main results. We propose a system design that will support simultaneous scanning of a search area in television and thermal imaging channels along a quasicircular trajectory, with the capability to expand the search area and provide 30% frame overlap for efficient image fusion. Gyroscopic sensors on the stabilized common platform for the system and global navigation system antennas will support the requisite accuracy of the surveillance platform and target geolocation. The change in system viewing angle per unit time that would enable the resulting image to be obtained without missing any lines was determined. The primary components of the error in the coordinates of the surveillance platform when surveilling an object were also determined. The combination of field-of-view scanning and use of geolocation equipment supports the recognition of poachers and poaching equipment and the determination of their coordinates within a global coordinate system. An integrated high-precision GPS receiver (ProPak-V3-424) with an inertial system and data processing technology using Tightly Coupled IMU algorithms (Inertial Explorer) was found to be capable of determining the horizontal coordinates of a surveillance platform to within 12 m at a probability of 95% or better. Practical significance. A prototype of the proposed design increased the maximum reliable detection and recognition range for poachers and poaching equipment (cars and trucks) in a forest through the fusion of data obtained in the visible and infrared spectral bands.

Keywords:

optical glass, humidity, capillary condensation, glass dissolution, reflection coefficient

OCIS codes: 120.0280, 110.4234, 100.4145

References:

1. V. D. Larichev, E. O. Derevyanko, and V. T. Mazein, “Characteristics of corruption-related phenomena in natural resources use and protection,” Advokat (12), 71–90 (2004).

2. I. A. Konforkin, “Political, legal, and economic aspects of forest poaching,” in Sociopolitical Processes in a Changing World, V. P. Gavrikovaya, ed. (Tverskoy Gosudarstvenno˘ı Universitet, Tver’, 2018), pp. 79–82.

3. V. I. Sukhikh, “Illegal logging in Russia and approaches for eliminating it,” Lesn. Khoz. (4), 31–53 (2005).

4. É. D. Guse˘ınova and E. V. Maksimova, “Anti-poaching efforts on the Russian–Chinese border,” Aktual. Probl. Nauki Prakt. (3), 52–55 (2021).

5. O. V. Skudneva, “Drones in the Russian forest management system,” Izv. Vyssh. Uchebn. Zaved. Lesn. Khoz. (6), 150–154 (2014).

6. S. V. Koptev and O. V. Skudneva, “Opportunities for drone usage in forest management,” Izv. Vyssh. Uchebn. Zaved. Lesn. Khoz. (1), 130–138 (2018).

7. A. Rango, A. Laliberte, J. E. Herrick, C. Winters, K. Havstad, C. Steele, and D. Browning, “Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management,” J. Appl. Remote Sens. 3(1), 033542 (2009).

8. V. V. Tarasov and Yu. G. Yakushenkov, Dual-Band and Multi-spectral Optoelectronic Systems with Array Detectors (Universitetskaya Kniga, Moscow, 2007; Logos, 2007).

9. D. Farrah, K. E. Smith, D. Ardila, et al., “Far-infrared instrumentation and technological development for the next decade,” J. Astron. Telesc. Instrum. Syst. 5(2), 020901 (2019).

10. V. S. Goryainov, A. A. Buznikov, and V. I. Chernook, “Usage of lidar systems for environmental monitoring,” Izv. S.-Peterb. Gos. Élektrotekh. Univ. LÉTI (9), 22–30 (2012).

11. “Aircraft-based surveillance systems,” Diagnostics World, https:// diaworld.ru/production/111/.

12. N. I. Pavlov and G. I. Yasinski˘ı, “Compact airborne multispectral scanning device,” J. Opt. Technol. 77(3), 207–211 (2010) [Opt. Zh. 77(3), 67–72 (2010)].

13. V. V. Eremeev and A. É. Moskvitin, “Current issues in fusion of images from different remote Earth sensing systems,” Radiotekhnika (Moscow) 84(11(21)), 89–100 (2020).

14. G. N. Markushin, V. V. Korotaev, A. V. Koshelev, I. A. Samokhina, A. S. Vasil’ev, A. V. Vasil’eva, and S. N. Yaryshev, “Image fusion in a dualband scanning optoelectronic system for the search and detection of poaching activity,” J. Opt. Technol. 87(6), 365–370 (2020) [Opt. Zh. 87(6), 57–65 (2020)].

15. “Ural Optical and Mechanical Plant Production Association Joint-Stock Corporation optical surveillance systems,” 2020, http://www.uomz.ru/ru/production/optical-observation-system.

16. Y. Zhou, L. Wang, K. Jiang, L. Xue, F. An, B. Chen, and T. Yun, “Individual tree crown segmentation based on aerial image using superpixel and topological features,” J. Appl. Remote Sens. 14(2), 022210 (2020).

17. A. E. Effiom, L. M. van Leeuwen, P. Nyktas, J. A. Okojie, and J. Erdbrügger, “Combining unmanned aerial vehicle and multispectral Pleiades data for tree species identification, a prerequisite for accurate carbon estimation,” J. Appl. Remote Sens. 13(3), 034530 (2019).

18. A. S. Vasil’ev, A. V. Krasnyashchikh, V. V. Korotaev, O. Yu. Lashmanov, D. Yu. Lysenko, O. N. Nenarokomov, A. S. Shirokov, and S. N. Yaryshev, “Development of a hardware and software system for forest fire detection by image fusion,” Izv. Vyssh. Uchebn. Zaved. Priborostr. 55(12), 50–56 (2012).

19. A. S. Vasilev and V. V. Korotaev, “Research of the fusion methods of the multispectral optoelectronic systems images,” Proc. SPIE 9530, 953007 (2015).

20. E. M. Medvedev, I. M. Danilin, and S. R. Mel’nikov, Laser Ranging of Land and Forests (Geolidar: Geokosmos, Moscow, 2007)

21. A. I. Altukhov and D. S. Korshunov, “Method for identifying changes in the condition of the Earth surface using space-based photographs obtained at different times,” Nauchno-Tekh. Vestn. Inf. Tekhnol. Mekh. Opt. 19(3), 410–416 (2019).

22. M. L. Belov, V. A. Gorodnichev, V. Ya. Kolyuchkin, and S. B. Odinokov, Satellite-Based Optoelectronic Environmental Monitoring Systems (Izd. MGTU im. N. É. Baumana, Moscow, 2014).

23. A. S. Makarov, A. I. Omelaev, and V. L. Filippov, Introduction to Technology for the Development and Assessment of Scanning Television Systems (Unipress, Kazan’, 1998).

24. S. V. Medushev, V. E. Remizov, and V. V. Shichkov, “Promising options for construction of programmable two-coordinate steerable scanning mirrors,” Vopr. Élektromekh. Tr. VNIIÉM 107, 32–37 (2008).

25. M. M. Miroshnikov, Fundamentals of Optoelectronic Instruments, 3rd ed. (Lan’, St. Petersburg, 2010).

26. A. H. Lettington, I. M. Blankson, M. F. Attia, and D. Dunn, “Review of imaging architecture,” Proc. SPIE 4719, 327–340 (2002).

27. V. V. Korotaev, G. S. Mel’nikov, S. V. Mikheev, V. M. Samkov, and Yu. I. Soldatov, Fundamentals of Thermal Engineering (NIU ITMO, St. Petersburg, 2012).

28. N. Kul’chitski˘ı, A. Naumov, and V. Startsev, “Curent status and trends on the uncooled microbolometer market,” Tekhnol. Zashch. 2, 55–57 (2018).

29. V. I. Fedorov, Engineering Aerogeodesy (Nedra, Moscow, 1988).

30. V. P. Kovalenko, Photogrammetric Processing of Materials from Airborne Reconnaissance Imaging Equipment (VVIA im. Prof. N. E. Zhukovskogo, Moscow, 2003).

31. R. V. Zotov, Aerogeodesy (SibADI, Omsk, 2012), Vol. 1.

32. G. W. Hein, “From GPS and GLONASS via EGNOS to Galileo—positioning and navigation in the third millennium,” GPS Solutions 3(4), 39–47 (2000).

33. E. A. Plyusnin, “Advantages from the integration of satellite positioning systems and inertial measurement devices,” http://www.gisa.ru/49205.html.

34. GOST R 8.619-2006, “State system for ensuring uniformity of measurements,” 2006.

35. G. N. Gryazin, Applied Television Fundamentals and Systems, N. K. Mal’tsev, ed. (Politekhnika, St. Petersburg, 2011).