DOI: 10.17586/1023-5086-2022-89-09-49-58
УДК: 53.082.56+535.212+617.713+576.08
Fluorometric setup and method for studying the functional activity of corneal endotheliocytes
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Пальчикова И.Г., Смирнов Е.С., Карамшук Е.В., Гляненко В.С., Батурина Г.С., Каткова Л.Е., Соленов Е.И., Искаков И.А. Флуориметрическая установка и метод исследования функциональной активности эндотелиоцитов роговицы глаза // Оптический журнал. 2022. Т. 89. № 9. С. 49–58. http://doi.org/10.17586/1023-5086-2022-89-09-49-58
Palchikova I.G., Smirnov E.S., Karamshuk E.V., Glianenko V.S., Baturina G.S., Katkova L.E., Solenov E. I., Iskakov I.A. Fluorometric setup and method for studying the functional activity of corneal endotheliocytes [in Russian] // Opticheskii Zhurnal. 2022. V.89. № 9. P. 36-48. http://doi.org/10.17586/1023-5086-2022-89-09-36-48
I. G. Palchikova, E. S. Smirnov, E. V. Karamshuk, V. S. Glianenko, G. S. Baturina, L. E. Katkova, E. I. Solenov, and I. A. Iskakov, "Fluorometric setup and method for studying the functional activity of corneal endotheliocytes," Journal of Optical Technology. 89(9), 537-543 (2022). https://doi.org/10.1364/JOT.89.000537
Subject of study. Experimental methods for investigating the state of preservation and functionality of the corneal endothelium, which is determined by the water permeability of the cells and activity of ion pumps, mainly by sodium–potassium adenosine triphosphatase, were considered. Aim of study. The aim of this study was to identify significant measurable parameters such as the fluorescence intensity integrated over the entire cornea preparation and the temporal dynamic of this fluorescence. Additionally, a specialized experimental fluorometric setup was designed based on fiber optics. Method. Modifications were introduced to the composition and design of a universal experimental setup for the measurement of cell functions that enabled implementation of a fluorescence-based method for determination of the intracellular sodium concentration without processing the digital image of the cornea preparation. Main results. The specialized experimental setup and method were developed for investigating functions of the corneal endothelial cells and the intracellular signaling mechanisms whose activation or disfunction under conditions of a traumatic inflammation and after a hypothermic preservation can be related to the development of a corneal edema and a corneal graft disease. Practical significance. The specialized experimental setup and methods for functional testing of the corneal endothelial cells developed in this study can be applied to determine the degree of suitability of the cornea as a transplantation material. They can also be used as a system of tests for determining the effectiveness of the cornea preservation methods.
fluorescent method, hypothermic preservation, ocular corneal endothelium, intracellular natrium
Acknowledgements:OCIS codes: 120.3890, 170.1530, 170.6280
References:1. G. S. Baturina, L. E. Katkova, E. I. Solenov, and I. A. Iskakov, “Restoration of cornea endothelium function (review),” Sib. Nauchn. Med. Zh. 39(3), 28–34 (2019).
2. G. S. Baturina, L. E. Katkova, I. G. Palchikova, E. I. Solenov, and I. A. Iskakov, “New approaches to the study of the functional activity of corneal endothelial cells,” Sovrem. Tekhnol. Oftal’mol. (5), 262–265 (2019).
3. J. Schroeter and P. Rieck, “Endothelial evaluation in the cornea bank,” Dev. Ophthalmol. 43, 47–62 (2009).
4. L. M. Vianna, H. D. Li, J. D. Holiman, C. Stoeger, R. Belfort, Jr., and A. S. Jun, “Characterization of cryopreserved primary human corneal endothelial cells cultured in human serum-supplemented media,” Arq. Bras. Oftalmol. 79, 37–41 (2016).
5. J. A. Bonanno, “Molecular mechanisms underlying the corneal endothelial pump,” Exp. Eye Res. 95(1), 2–7 (2012).
6. G. S. Baturina, L. E. Katkova, E. I. Solenov, I. G. Palchikova, and I. A. Iskakov, “Corneal endothelium functional activity in pigs,” Sarat. Nauchno-med. Zh. 16(2), 584–587 (2020).
7. L. S. Liebovitch and J. Fischbarg, “Effects of inhibitors of passive Na+ and HCO−3 fluxes on electrical potential and fluid transport across rabbit corneal endothelium,” Curr. Eye Res. 2(3), 183–186 (1982).
8. E. K. Hoffmann, I. H. Lambert, and S. F. Pedersen, “Physiology of cell volume regulation in vertebrates,” Physiol. Rev. 89(1), 193–277 (2009).
9. C. H. June and J. S. Moore, “Measurement of intracellular ions by flow cytometry,” in Current Protocols in Immunology (Wiley, New York, 2004), chap. 5, unit 5.5.
10. E. Solenov, H. Watanabe, G. T. Manley, and A. S. Verkman, “Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method,” Am. J. Physiol. Cell Physiol. 286(2), 426–432 (2004).
11. A. A. Konev, I. G. Palchikova, I. A. Iskakov, L. E. Katkova, G. S. Baturina, and E. I. Solenov, “IT analysis of cornea endothelium transport ability in corneal transplants after hypothermic conservation,” in 10th International Conference on Bioinformatics Genome Regulation and Structure\Systems Biology (2016), p. 136.
12. G. S. Baturina, I. G. Palchikova, A. A. Konev, E. S. Smirnov, L. E. Katkova, E. I. Solenov, and I. A. Iskakov, “Study of the effect of hypothermic conservation on the intracellular sodium concentration in the endothelium of corneal transplants,” Vavilovskii Zh. Genet. Sel. 22(4), 433–437 (2018).
13. G. S. Baturina, L. E. Katkova, I. G. Palchikova, N. G. Kolosova, E. I. Solenov, and I. A. Iskakov, “Mitochondrial antioxidant SkQ1 improves hypothermic preservation of the cornea,” Biochemistry (Moscow) 86(3), 382–388 (2021).
14. A. A. Konev, I. G. Pal’chikova, E. I. Solenov, and E. S. Smirnov, “CytoDynamics: a software for processing series of microscopic images of living cells in cell cultures,” Russian certificate for a computer program 2016612766 RF no. 2016610153 (2016).
15. A. V. Ilyaskin, D. I. Karpov, D. A. Medvedev, A. P. Ershov, G. S. Baturina, L. E. Katkova, and E. I. Solenov, “Quantitative estimation of transmembrane ion transport in rat renal collecting duct principal cells,” Gen. Physiol. Biophys. 33, 13–28 (2014).
16. E. I. Solenov, “Cell volume and sodium content in rat kidney collecting duct principal cells during hypotonic shock,” J. Biophys. 2008, 420963 (2008).