DOI: 10.17586/1023-5086-2023-90-10-48-66
УДК: 004.93'12
Neural network training for thermal image classification based on visible spectrum images
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ермаченкова М.К., Малашин Р.О., Бойко А.А. Обучение нейронных сетей для классификации тепловизионных изображений на основе изображений видимого спектра // Оптический журнал. 2023. Т. 90. № 10. С. 48–66. http://doi.org/10.17586/1023-5086-2023-90-10-48-66
Ermachenkova M.K., Malashin R.O., Boiko A.A. Neural network training for thermal image classification based on visible spectrum images [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 10. P. 48–66. http://doi.org/10.17586/10235086202390104866
M. K. Ermachenkova, R. O. Malashin, and A. A. Boiko, "Neural network training for thermal image classification based on visible spectrum images," Journal of Optical Technology. 90(10), 590-600 (2023). https://doi.org/10.1364/JOT.90.000590
Subject of the study. Methods of visible spectrum images augmentation in the tasks of thermal images classification were considered. The aim of the study is to investigate the ways to improve the generalization ability of neural networks trained on visible spectrum images to recognize the thermal images. Method. Existing sets of the thermal images have limited size, and obtaining such data requires expensive equipment. At the same time, the classifiers trained on visible spectrum data show low classification accuracy on data of different optical spectra. There are various methods of enriching the thermal datasets to solve the problem of object recognition, for example, the use of synthesized images, however these approaches require the use of thermal images in this or that form, which imposes restriction on the possibilities of their application. Meanwhile, there are artistic methods of modeling farinfrared scenes based on visible spectrum images that allow to achieve visual similarity, for example, by means of contrast correction and transformation of color channel values. We have proposed and investigated a preliminary image transformation method to determine whether the classifying neural network is capable of extracting features from modified visible spectrum images sufficient to generalize to thermal data. Main results. Owing to the developed method of augmentation and preparation of the visible spectrum data, the level of classification errors was reduced from 17% to 6%. Practical Significance. Our study shows that the proposed method of training made it possible to improve the classification accuracy of the thermal imaging data without using the images of the appropriate spectrum in the training sample. This approach can be used as a method of data enrichment, for example, if the available resources for obtaining thermal imagery data are limited.
thermal image classification, data augmentation methods, thermal infrared images, neural network training
OCIS codes: 150.1135, 100.4996
References:- Mittal U., Srivastava S., Chawla P. Object detection and classification from thermal images using region based convolutional neural network // Journal of Computer Science. 2019. V. 15. № 7. P. 961–971. https://doi.org/10.3844/jcssp.2019.961.971
- FLIR Systems, Inc. Free Flir Thermal Dataset for Algorithm Training // URL: https://www.flir.com/oem/adas/adasdatasetagree (accessed 13.06.2022)
- Qirat Ashfaq, Usman Akram, Roshaan Zafar. Thermal Image dataset for object classification. Mendeley Data. 2021. Ver 1. https://doi.org/10.17632/btmrycjpbj.1
- James Cook. Chips Thermal Face Dataset // URL: https://www.kaggle.com/kagglechip/chipsthermalfacedataset (accessed 30.04.2022)
- Miller D., Boyang Song, Farnsworth M., Divya Tiwari. PitchIn LBAM Thermal Imaging Dataset // (updated 14.05.2021) URL: https://www.kaggle.com/dbmiller/pitchinlbamthermalimagingdataset (accessed 30.04.2022)
- Farzeen Munir, Shoaib Azam, Muhammd Aasim Rafique, Ahmad Muqeem Sheri, Moongu Jeon, Witold Pedrycz. Exploring thermal images for object detection in underexposure regions for autonomous driving // Applied Soft Computing. May 2022. V. 121. № C. https://doi.org/10.1016/j.asoc.2022.108793.
- Zhou Hang, Min Sun, Xiang Ren, Xiuyuan Wang. Visiblethermal image object detection via the combination of illumination conditions and temperature information // Remote Sensing. 2021. V. 13. № 18. P. 3656. https://doi.org/10.3390/rs13183656
- Tsurkov V.I, Grinchuk O.V. Cyclic generative neural networks to improve face recognition in nonstandard domains // Journal of Computer and Systems Sciences International. 2018. V. 57. № 4. P. 620–625. https://doi.org/10.1134/S1064230718040093
- Dai Xuerui, Yuan Xue, Wei Xueye. TIRNet: Object detection in thermal infrared images for autonomous driving // Applied Intelligence. 2021. V. 51. P. 1–18. https://doi.org/10.1007/s10489020018822
- Lee D.G., Jeon M.H., Cho Y., Kim A. Edgeguided multidomain RGBtoTIR image translation for training vision tasks with challenging labels // In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). May 29, 2023 — Jun 2, 2023. London, UK. P. 8291–8298. https://doi.org/10.1109/ICRA48891.2023.10161210
- Akkaya B., Altinel F., Halici U. Selftraining guided adversarial domain adaptation for thermal imagery // Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), online, June 19–25. 2021. Nashville, TN, USA. P. 4317–4326. https://doi.org/10.1109/cvprw53098.2021.00488
- Gundogdu E., Koç A., Alatan A.A. Object classification in infrared images using deep representations // 2016 IEEE International Conference on Image Processing (ICIP). Phoenix. Arizona. USA. 25–28 Sept. 2016. P. 1066–1070. https://doi.org/10.1109/ICIP.2016.7532521
- Xu J., Vázquez D., Ramos S., López A.M., Ponsa D. Adapting a pedestrian detector by boosting LDA exemplar classifiers // 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Portland, OR, USA. 2013. P. 688–693. https://doi.org/ 10.1109/CVPRW.2013.104
- Feng D., HaaseSchütz C., Rosenbaum L., Hertlein H., Glaeser C., Timm F., Wiesbeck W., Dietmayer K. Deep multimodal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges // IEEE Transactions on Intelligent Transportation Systems. Feb 17, 2020. V. 22 № 3. P. 1341–1360. https://doi.org/ 10.1109/TITS.2020.2972974
- Craig Boehman. How to create an infrared effect in Photoshop (published 28.06.2022). URL: https://www.makeuseof.com/howtocreateaninfraredeffectinphotoshop/(accessed 01.05.2023).
- Shorten C., Khoshgoftaar T.M. A survey on image data augmentation for deep learning // J Big Data. 2019. V. 6. № 60. P. 1–48. https://doi.org/10.1186/s4053701901970
- Haeberli P., Voorhies В. Image processing by linear interpolation and extrapolation // IRIS Universe Magazine. 1994. V. 28. P. 8–9.
- Gonzalez R.C., Woods R.E. Digital image processing (4th ed.). New York, NY: Pearson, 2018. P. 138–140.
- Leo Levi. Unsharp masking and related image enhancement techniques // Computer Graphics and Image Processing. 1974. V. 3. № 2. P. 163–177.
- Wightman R. PyTorch image models. GitHub repository. 2019. URL: https://github.com/rwightman/pytorchimagemodels. (accessed 30.04.2023) https://doi.org/10.5281/zenodo.4414861
- Deng J., Dong W., Socher R., Li L.J., Kai Li, Li FeiFei. ImageNet: A largescale hierarchical image database // 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA. 2009. P. 248–255. https:// doi.org/ 10.1109/CVPR.2009.5206848
- Malashin R.O., Kadykov A.B. Investigation of the generalizing capabilities of convolutional neural networks in forming rotationinvariant attributes // Journal of Optical Technology. 2015. V. 82. № 8. P. 509–515. https://doi.org/10.1364/JOT.82.000509
- He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition // Proceedings of the IEEE conference on computer vision and pattern recognition. June 27 — June 30. 2016. Las Vegas, Nevada, US. P. 770–778. https://doi.org/10.48550/arXiv.1512.03385
- Tan M., Le Q. EfficientNet: Rethinking model scaling for convolutional neural networks // Proceedings of the 36th International Conference on Machine Learning. PMLR. 9–15 June 2019. Long Beach. California. USA. V. 97. P. 6105–6114. https://doi.org/10.48550/arXiv.1905.11946
- Murphy Kevin P. Machine learning: a probabilistic perspective. Cambridge, Massachusetts, USA: MIT Press, 2012. 1067 p.
- Hinton G. Coursera neural networks for machine learning. Lecture 6. 2018. URL: https://www.coursera.org/learn/neuralnetworksdeeplearning (accessed 30.04.2023).
- Cubuk E.D., Zoph B., Shlens J., Le Q.V. RandАugment: Practical automated data augmentation with a reduced search space // IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, WA, USA. June 14–19 2020. P. 3008–3017. https://doi.org/10.1109/CVPRW50498.2020.00359
- Cubuk E.D., Zoph B., Mané D., Vasudevan V., Le Q.V. AutoAugment: Learning augmentation strategies from data // IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA. June 16–20. 2019. P. 113–123. https://doi.org/10.1109/CVPR.2019.00020
- Hendrycks D., Mu N., Cubuk E.D., Zoph B., Gilmer J., Lakshminarayanan B. Augmix: A simple data processing method to improve robustness and uncertainty // arXiv preprint arXiv:1912.02781 (published: 17.02.2020). URL: https://doi.org/10.48550/arXiv.1912.02781 (accessed 30.04.2023).
- Zhong Zhun, Liang Zheng, Guoliang Kang, Shaozi Li, Yi Yang. Random erasing data augmentation // Proceedings of the AAAI conference on artificial intelligence. 2020. V. 34. № 7. P. 13001–13008. https://doi.org/10.48550/arXiv.1708.04896