DOI: 10.17586/1023-5086-2023-90-11-102-112
УДК: 004.932.2
Algorithm for correction of geometric distortions of spectral images recorded by an acousto-optical hyperspectrometer under conditions of angular deviations
Full text on elibrary.ru
Publication in Journal of Optical Technology
Шипко В.В., Пожар В.Э. Алгоритм коррекции геометрических искажений спектральных изображений, регистрируемых акустооптическим гиперспектрометром в условиях угловых отклонений // Оптический журнал. 2023. Т. 90. № 11. С. 102–112. http://doi.org/10.17586/1023-50
Shipko V.V., Pozhar V.E. Algorithm for correction of geometric distortions of spectral images recorded by an acousto-optical hyperspectrometer under conditions of angular deviations [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 11. P. 102–112. http://doi.org/10.17586/1023-5086-2023-90-11-102-11286-2023-90-11-102-112
Vladimir Shipko and Vitold Pozhar, "Algorithm for correction of geometric distortions of spectral images recorded using an acousto-optical hyperspectrometer under conditions of angular deviations," Journal of Optical Technology. 90 (11), 699-705 (2024). https://doi.org/10.1364/JOT.90.000699
Subject of study. The process of formation of spectral images by an acousto-optical hyper-spectrometer under conditions of angular deviations of the equipment carrier is considered. Aim of study. Development of a model of distortion of hyperspectral images generated by an acousto-optical hyperspectrometer under the conditions of angular oscillations of an unmanned aerial vehicle and synthesis of an algorithm for correcting such distortions based on angular data from an inertial navigation system. Method. The research method is based on a photogrammetric model of the formation of spectral images under the conditions of angular deviations of the registration system. Main results. The relationship of hyperspectrometer deviations at the angles of roll, pitch and yaw with the nature of geometric distortions of the recorded spectral images is determined. An algorithm for correcting distortions of spectral images based on the data of an inertial navigation system has been developed. The analysis of experimental and numerical studies of the developed algorithm has shown a sufficiently high accuracy of correction of geometric distortions of images caused by angular fluctuations of the registration system in the range of possible measurement errors. Practical significance. The developed algorithm is computationally simple compared to the known ones, does not require an additional system for registering reference images or complex precalibration, which allows correction of hyperspectral images on a time scale close to real with acceptable quality.
hyperspectral images, geometric distortion, correction, navigation system, acousto-optical tunable filter, unmanned aerial vehicle
OCIS codes: 100.2000, 100.4145
References:- Vinogradov A.N., Egorov V.V., Kalinin A.P., et al. A line of aviation hyper-spectrometers in the UV, visible, and near-IR ranges // J. Opt. Technol. 2016. V. 88. № 4. P. 237–243. https://doi.org/10.1364/JOT.83.000237
- Pozhar V.E., Machikhin A.S., Gaponov M.I., et al. Hyper-spectrometer based on tunable acousto-optic filters for UAVs // Lighting Engineering. 2019. V. 27. № 3. P. 99–104. http://dx.doi.org/10.33383/2018-029
- Yukhno P.M., Ogreb S.M., Tishaninov M.V. Statistical synthesis of a hyper-spectral detector // Optoelectronics, Instrumentation and Data Proc. 2015. V. 51. № 3. P. 264–271. http://dx.doi.org/10.3103/S8756699015030085
- Yukhno P.M. Features of colored object detection by a person compared with using hyperspectral technology // J. Opt. Technol. 2022. V. 89. № 7. P. 388–394. https://doi.org/10.1364/JOT.89.000388
- Borzov S.M., Potaturkin O.I. Spectral-spatial methods for hyperspectral image classification. Review // Optoelectronics, Instrumentation and Data Proc. 2018. V. 54. № 6. P. 582–599. http://doi.org/10.3103/S8756699018060079
- Mazur M.M., Pozhar V.E. Spectrometers based on acousto-optical filter // Measurement Techniques. 2015. V. 58. № 9. P. 982–988. http://dx.doi.org/10.1007/s11018-015-0829-5
- Vavilov Yu.A. Automatic flight control systems [in Russian]. Moscow: VVIA named after Prof. N.E. Zhukovsky and Yu.A. Gagarin Publ., 2009. 412 p.
- Kazantsev A.O. An effective algorithm for correcting geometric distortions in aviation hyperspectral images [in Russian] // Exploring the Earth from Space. 2009. № 5. Р. 49–55.
- Zhurkin I.G., Nikishin Yu.A. Methodology and technology of geometric correction of unstabilized images of an onboard hyperspectrometer [in Russian] // Izv. VUZov. "Geodesy and aerial photography". 2010. № 5. P. 86–92.
- Ilyin A.A., Vinogradov A.N., Egorov V.V., et al. Method of geometric correction of hyperspectral images of the Earth's surface [in Russian] // Modern Problems of Remote Sensing of the Earth from Space. 2012. V. 9. № 1. Р. 39–46.
- Strakhov P.V., Badasen E.V., Shurygin B.N. A new algorithm for geometric correction of images obtained by aviation scanner systems using reference points without using onboard data [in Russian] // Collection of Abstracts of the XIV All-Russian Open Conference "Modern Problems of Remote Sensing of the Earth from Space". Moscow: IKI RAS Publ., 2016. P. 53.
- Chen L.C., Rau J.Y. Geometric correction of airborne scanner imaging using orthophotos and triangulated feature point matching // Int. J. Remote Sensing. 1993. V. 14. № 16. P. 3041–3059. http://dx.doi.org/10.1080/01431169308904418
- Alpatov B.A., Babayan P.V. Electronic image alignment during multispectral observation [in Russian] // Digital Signal Proc. 2003. № 1. Р. 24–26.
- Maksimov V.A., Kholopov I.S. Algorithm for correction of projective distortions in low-altitude photo/video shooting according to data from the inclinometer and rangefinder [in Russian] // Bulletin of RGRTU. 2016. № 58. Р. 109–116.
- Bondarenko M.A., Bondarenko A.V. Image formation in multispectral video systems for visual and automatic non-destructive testing [in Russian] // Successes of Appl. Phys. 2018. V. 6. № 4. P. 325–332.
- Image processing in aviation vision systems [in Russian] / Ed. by Kostyashkin L.N., Nikiforov M.B. Moscow: "Fizmatlit" Publ., 2016. 240 p.
- Shipko V.V. Algorithm for correction of geometric distortions of hyperspectral images formed during angular oscillations of an unmanned aerial vehicle // Optoelectronics, Instrumentation and Data Proc. 2023. V. 59. № 2. P. 200–206. http://doi.org/10.3103/S8756699023020127
- Nesterov I.A. High-precision MEMS inertial navigation systems with gyrocompassing [in Russian] // Components and Technologies. 2022. № 5. P. 12.
- Technical vision in mobile object management systems [in Russian] // Proc. of the Scientific and Technical Conference-Seminar. Iss. 4 / Ed. by Nazirov R.R. Moscow: KDU Publ., 2011. 328 p.