ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-11-29-38

УДК: 535.8

Quality assesment of stereoscopic images under acousto-optic diffraction in paratellurite crystal

For Russian citation (Opticheskii Zhurnal):

Батшев В.И., Пожар В.Э., Кананыхин О.А. Исследование качества передачи стереоскопического изображения при акустооптической дифракции в кристалле парателлурита // Оптический журнал. 2023. Т. 90. № 11. С. 29–38. http://doi.org/10.17586/1023-5086-2023-90-11-29-38

 

 

Batshev V.I., Pozhar V.E., Kananykhin O.A. Quality assesment of stereoscopic images under acousto-optic diffraction in paratellurite crystal [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 11. P. 29–38. http://doi.org/10.17586/1023-5086-2023-90-11-29-38

For citation (Journal of Optical Technology):

 V. I. Batshev, V. E. Pozhar, and O. A. Kananykhin, "Quality assessment of stereoscopic images under acousto-optic diffraction in paratellurite crystal," Journal of Optical Technology. 90 (11), 654-659 (2024).  https://doi.org/10.1364/JOT.90.000654

Abstract:

Subject of study. The problem of obtaining spectral stereoscopic images in an original configuration, where one acousto-optical filter is used to filter a pair of light beams, is considered. Aim of study. Determination of the nature of changes in image quality when changing the angle of beam separation in an acousto-optical filter for further the spectral stereo system optimization. Method. The imagining scheme can be implemented by means of light diffraction by ultrasound in directions deviated from the basic plane (–110) of TeO2 crystal cell in classical wide-aperture acousto-optical tunable filters. A test-bench is created to determine the characteristics of image quality during azimuthal tunable rotation of the acousto-optical cell. Main results. The spectral images stack representing the dashed and radial test-targets was recorded and values of the contrast and the spatial resolution were calculated at different angles of inclination. It was revealed that the degradation is rather slow, so the inclination angle can be varied considerably (up to 16° parallax). Practical significance. The research demonstrates the prospects of the described scheme of acousto-optic filtering of a pair of beams for stereo-spectral devices, which are promising for technical vision systems.

Keywords:

stereoscopy, video spectrometry, acousto-optic filtration, paratellurite, wide-aperture diffraction

Acknowledgements:
the study was supported by the Russian Science Foundation grant № 19-19-00606П. The results of the work were obtained using the equipment of the Center for Collective Use of the Scientific and Technological Center for Unique Instrumentation of the RAS

OCIS codes: 170.1065, 300.0300, 300.6320

References:
  1. Roth G.A., Tahiliani S., Neu-Baker N.M., et al. Hyperspectral microscopy as an analytical tool for nanomaterials // Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2015. V. 7(4). P. 565–579. https://doi.org/10.1002/wnan.1330
  2. Dong X., Jakobi M., Wang S., et al. A review of hyperspectral imaging for nanoscale materials research // Appl. Spectrosc. Rev. 2019. V. 54(4). P. 285–305. http://dx.doi.org/10.1080/05704928.2018.1463235
  3. Goetz A.F.H. Three decades of hyperspectral remote sensing of the Earth: A personal view // Remote Sensing of Environment. 2009. V. 113. P. S5–S16. http://dx.doi.org/10.1016/j.rse.2007.12.014
  4. Lu G., Fei B. Medical hyperspectral imaging: a review // J. Biomed. Opt. 2014. V. 19(1). P. 010901. https://doi.org/10.1117/1.JBO.19.1.010901
  5. Gutiérrez-Gutiérrez J.A., Pardo A., Real E., et al. Custom scanning hyperspectral imaging system for biomedical applications: Modeling, benchmarking, and specifications // Sensors. 2019. V. 19. № 7. P. 1692. https://doi.org/10.3390/s19071692
  6. Halicek M., Fabelo H., Ortega S., et al. In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: revealing the invisible features of cancer // Cancers. 2019. V. 11. № 6. P. 756. https://doi.org/10.3390/cancers11060756
  7. Dale L.M., Thewis А., Boudry С., et al. Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: A review // Appl. Spectrosc. Rev. 2013. V. 48. № 2. P. 142–159. https://doi.org/10.1080/05704928.2012.705800
  8. Daniel F., Mounier A., Pérez-Arantegui J., et al. Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain) // Microchem. J. 2016. V. 126. P. 113–120. https://doi.org/10.1016/j.microc.2015.11.044
  9. Chang C.I. Hyperspectral imaging: Techniques for spectral detection and classification. N.Y.: Springer New York, 2003. 370 p. https://doi.org/10.1007/978-1-4419-9170-6
  10. Pozhar V.E., Machikhin A.S. Spectral-polarization systems of three-dimensional technical vision based on acousto-optic filtering // Light and Eng. 2022. V. 30. № 5. P. 37–42. https://doi.org/10.33383/2022-088
  11. Batshev V., Machikhin A., Pozhar V. Quality assessment of stereoscopic spectral images obtained with use acousto-optic diffraction in a single TeO2 crystal // Proc. Meetings on Acoustics. 2020. V. 38(1). P. 030021. https://doi.org/10.1121/2.0001261
  12. Machikhin A.S., Batshev V.I., Pozhar V.E., Mazur M.M. Acousto-optical full-field stereoscopic spectrometer for 3D reconstruction in an arbitrary spectral interval // Computer Opt.  2016. V. 40. № 6. P. 871–877. http://doi.org/10.18287/2412-6179-2016-40-6-871-877
  13. Naumov A.A., Gorevoy A.V., Machikhin A.S., et al. Estimating the quality of stereoscopic endoscopic systems // J. Phys. Conf. Ser. 2019. № 1421. Р. 012044. http://dx.doi.org/10.1088/1742-6596/1421/1/012044
  14. Voloshinov V.B., Mosquera J.C. Wide-aperture acousto-optic interaction in birefringent crystals // Opt. and Spectrosc. 2006. V. 101. № 4. P. 635–641. http://dx.doi.org/10.1134/S0030400X06100225
  15. Epikhin V.M., Kalinnikov Yu.K. Compensation de la dérive spectrale de l'angle de diffraction dans un filtre acousto-optique non-collinéaire [in Russian] // Žurnal tehničeskoj fiziki. 1989. V. 59(2). Р. 160–163. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19782342
  16. Machikhin A., Batshev V., Pozhar V. Aberration analysis of AOTF-based spectral imaging systems // JOSA A. 2017. № 34(7). P. 1109-1113. https://doi.org/10.1364/JOSAA.34.001109
  17. Voloshinov V. B., Molchanov V. Y., Babkina T. M. Acousto-optic filter of nonpolarized electromagnetic radiation // Technical Physics. 2000. V. 45. P. 1186–1191.
  18. Kirillovskii V.K. Optical measurements. P. 4. Optical image quality assessment and its characteristics measurement [in Russian]. St. Petersburg: ITMO State University Press, 2005. 67 р.