ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-11-62-70

УДК: 681.785.5

Unified optical scheme of acousto-optical imaging spectrometer for visible range of spectrum

For Russian citation (Opticheskii Zhurnal):

Поляков М.П., Батшев В.И., Мачихин А.С., Пожар В.Э. Унифицированная оптическая схема акустооптического видеоспектрометра видимого диапазона спектра // Оптический журнал. 2023. Т. 90. № 11. С. 62–70. http://doi.org/10.17586/1023-5086-2023-90-11-62-70

 

Poliakov M.P., Batshev V.I., Machikhin A.S., Pozhar V.E. Unified optical scheme of acousto-optical imaging spectrometer for visible range of spectrum [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 11. P. 62–70. http://doi.org/10.17586/1023-5086-2023-90-11-62-70

 

For citation (Journal of Optical Technology):

M. P. Poliakov, V. I. Batshev, A. S. Machikhin, and V. E. Pozhar, "Unified optical scheme of an acousto-optical imaging spectrometer for the visible spectrum," Journal of Optical Technology. 90 (11), 674-678 (2024). https://doi.org/10.1364/JOT.90.000674

Abstract:

Subject of study. Methods for designing unified optical schemes of acousto-optical imaging spectrometers for various purposes. Aim of study. Creation of a unified optical scheme that works with both single and double acousto-optical monochromators without declining image quality. Method. The presented method for designing optical schemes of acousto-optical imaging spectrometers consists of two stages: the formation special multiconfiguration and optimization parameters in the computer-aided design of optical schemes for calculating the optical scheme and subsequent spatial-spectral calibration of the finished acousto-optical imaging spectrometer. Main results. A small-sized reconfigurable imaging spectrometer in the visible range of spectrum with an acousto-optical monochromator in parallel beams of aperture rays is presented. A feature of this device is a unified optical scheme that can work with both a single and a double acousto-optical monochromator. The stages of designing the acousto-optical imaging spectrometer are described, and the features of calculating the unified optical scheme are indicated. The analysis of the calculated unified optical scheme is carried out. The image quality of the optical scheme is estimated for two configurations. The configurations of the unified optical scheme with double and single monochromatization are compared. It is shown that the single acousto-optical monochromator can operate in an enlarged angular field of view with a preliminary specialized spatial-spectral calibration. The features of these configurations of the acousto-optical imaging spectrometer and the possibility of their application in the implementation of spectral instruments for solving various applied problems are presented. Practical significance. The results of the work can be used in the design of unified optical schemes suitable for use with both single and double acousto-optic monochromators without declining image quality.

Keywords:

acousto-optical tunable filter, imaging spectrometer, image quality, luminosity, angular field of view

Acknowledgements:
the results of the work were obtained using the equipment of the Center for Collective Use of the Scientific and Technological Center of Unique Instrumentation of the RAS. The work was carried out within the framework of the State Assignment "Development of new acousto-optical methods and devices" (FFNS-2022-0010)

OCIS codes: 230.1040, 220.3620

References:
  1. Chang C.-I. Hyperspectral data exploitation: Theory and applications. N.J.: John Wiley & Sons, 2007. 440 p.
  2. Bei L., Dennis G.I., Miller H.M., et al. Acousto-optic tunable filters: Fundamentals and applications as applied to chemical analysis techniques // Progress in Quant. Electron. 2004. V. 28. № 2. P. 67–87. https://doi.org/10.1016/S0079-6727(03)00083-1
  3. Vo-Dinh T. A hyperspectral imaging system for in vivo optical diagnostics // IEEE Eng. in Medicine and Biology Magazine. 2004. V. 23. №  5. P. 40–49. https://doi.org/10.1109/MEMB.2004.1360407
  4. Lorente D., Aleixos N., Gómez-Sanchís J., et al. Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment // Food Bioprocess Technol. 2012. V. 5. P. 1121–1142. https://doi.org/10.1007/s11947-011-0725-1
  5. Chivukula V. S., Shur M. S., Ciplys D. Recent advances in application of acoustic, acousto-optic and photoacoustic methods in biology and medicine // Physica Status Solidi (a). 2007. V. 204. № 10. P. 3209–3236. https://doi.org/10.1002/pssa.200723313
  6. Pang Y., Zhang K., Lang L. Review of acousto-optic spectral systems and applications // Frontiers in Phys. 2022. V. 10. P. 1319. https://doi.org/10.3389/fphy.2022.1102996
  7. Mazur M.M., Suddenok Y.A., Shorin V.N. Double acousto-optic monochromator of images with tunable width of the transmission function // Technical Physics Letters. 2014. V. 40. № 2. P. 167–169. https://doi.org/10.1134/S1063785014020254
  8. Machikhin A.S., Gorevoy A.V., Martynov G.N., et al. Spatio-spectral transformation of non-collimated light beams diffracted by ultrasound in birefringent crystals // Photon. Res. 2021. V. 9. № 5. P. 687–693. https://doi.org/10.1364/PRJ.417992
  9. Volosov D.S., Tsivkin M.V. Theory and calculation of the light-optical systems of projection devices [in Russian]. Moscow: "Iskusstvo" Publ., 1960. P. 143, 150.
  10. Pate M.A. Optical design and specification of telecentric optical systems // Internat. Opt. Design Conf. 1998. V. 3482. P. 877–886. https://doi.org/10.1117/12.322029
  11. Gebgart A.Y. Design features of some types of ultrawide-angle objectives // J. Opt. Technol. 2010. V. 77. № 9. P. 538–541. https://doi.org/10.1364/JOT.77.000538
  12. Machikhin A.S., Batshev V.I., Pozhar V.E., et al. Minimizing aberrations of a near-infrared acousto-optic video spectrometer by optimizing the tunable filter parameters // J. Opt. Technol. 2019. V. 86. № 12. P. 794–798. https://doi.org/10.1364/JOT.86.000794
  13. Champagne J., Kastelik J.-C., Samuel D., et al. Study of the spectral bandwidth of a double-pass acousto-optic system // Appl. Opt. 2018. V. 57. № 10. P. 49–55. https://doi.org/10.1364/ao.57.000c49
  14. Gupta N., Suhre D.R. Effects of sidelobes on acousto-optic tunable filter imaging // Opt. Eng. 2017. V. 56. № 7. P. 073106. https://doi.org/10.1117/1.oe.56.7.073106
  15. Wang P., Zhang Z. Double-filtering method based on two acousto-optic tunable filters for hyperspectral imaging application // Opt. Exp. 2016. V. 24. № 9. P. 9888–9895. https://doi.org/10.1364/OE.24.009888
  16. Epikhin V.M., Kalinnikov Yu.K. Compensation de la dérive spectrale de l'angle de diffraction dans un filtre acousto-optique non-collinéaire [in Rus-sian] // Žurnal tehničeskoj fiziki. 1989. V. 59. № 2. P. 160–163. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19782342
  17. Machikhin A.S., Gorevoy A.V., Pozhar V.E., et al. Computational technique for field-of view expansion in AOTF-based imagers // Opt. Lett. 2022. V. 47. № 3. P. 585–588. https://doi.org/10.1364/OL.438374