ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-02-03-10

УДК: 530.145:535.12:681.7:53.082.5

The impact of polarization control system on the parameters of continuous variables quantum key distribution system

For Russian citation (Opticheskii Zhurnal):

Геллерт М.Е., Сулимов Д.В., Наседкин Б.А., Гончаров Р.К., Филипов И.М., Морозова П.А., Гончаров Ф.М., Яшин Д.А., Чистяков В.В., Самсонов Э.О., Егоров В.И., Первушин Б.Е., Адам Ю.А. Влияние системы поляризационного контроля на параметры системы квантового распределения ключа на непрерывных переменных // Оптический журнал. 2023. Т. 90. № 2. С. 3–10. http: doi.org/10.17586/1023-5086-2023-90-02-03-10

 

Gellert M.E., Sulimov D.M., Nasedkin B.A., Goncharov R.K., Filipov I.M., Morozova P.A., Goncharov F.M., Yashin D.A., Chistyakov V.V., Samsonov E.O.,  Egorov V.O., Pervushin B.E., Adam Iu. A.The impact of polarization control system on the parameters of continuous variables quantum key distribution system (In Russian) // Opticheskii Zhurnal.  2023. V. 90. № 2. P. 3–10. http: doi.org/10.17586/1023-5086-2023-90-02-03-10

For citation (Journal of Optical Technology):

M. E. Gellert, D. V. Sulimov, B. A. Nasedkin, R. K. Goncharov, I. M. Filipov, P. A. Morozova, F. M. Goncharov, D. A. Yashin, V. V. Chistiakov, E. O. Samsonov, V. I. Egorov, B. E. Pervushin, and I. A. Adam, "Impact of the polarization control system on continuous-variable quantum key distribution system parameters," Journal of Optical Technology. 90(2), 55-58 (2023). https://doi.org/10.1364/JOT.90.000055

Abstract:

Subject of study. This paper considers a polarization control method of optical radiation for a continuous variables quantum key distribution system for correct polarization demultiplexing of the local oscillator and signal state necessary to ensure the correct performance of the presented system. Aim of study. The aim of this work is to develop a system of active polarization control and experimental evaluation of the effect of this system on the parameters of continuous variables quantum key distribution system. Method. The polarization control system considered in this paper is based on a constant analysis of the local oscillator radiation and maximization of its intensity due to the stochastic gradient descent algorithm. Because of the principle of active polarization control operation, local oscillator fluctuations occur. In order to evaluate the added noise  an experimental scheme simulating the sender and receiver module of the continuous variables quantum key distribution system is used. This scheme allows to evaluate the noise introduced by the controller operation. Main results. The excess noise caused by the polarization controller is comparable to the polarization noise generated in a quantum key distribution system. Practical significance. Correct operation of quantum key distribution system on continuous variables can be realized only with polarization control device. Data  on polarization control effect on the system gives understanding of how to design and develop quantum cryptography systems in future.

Keywords:

continuous variables quantum distribution of keys, polarization control, polarization noise, active polarization control algorithm, stochastic gradient descent algorithm

OCIS codes: 060.0060

References:

1.    Weedbrook C., Lance A.M., Bowen W.P. et al. Quantum cryptography without switching // Physical review letters. 2004. V. 93. № 17. P. 170504. https: doi.org/10.1103/PhysRevLett.93.170504

2.   Laudenbach F., Pacher C., Fung C.H.F. et al. Continuous-variable quantum key distribution with Gaussian modulation — the theory of practical implementations // Advanced Quantum Technologies. 2018. V. 1. № 1. P. 1800011. https: doi.org/10.1002/qute.201800011

3.   Grosshans F., Van Assche G., Wenger J. et al. Quantum key distribution using gaussian-modulated coherent states // Nature. 2003. V. 421. № 6920. P. 238–241. https: doi.org/10.1038/nature01289

4.   Laudenbach F., Pacher C. Analysis of the trusted-device scenario in continuous variable quantum key distribution // Advanced Quantum Technologies. 2019. V. 2. № 11. P. 1900055. https: doi.org/10.1002/qute.201900055

5.   Zhang Y., Chen Z., Pirandola S. et al. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber // Physical review letters. 2020. V. 125. № 1. P. 010502. https:doi.org/10.1103/PhysRevLett.125.010502

6.   Wang X., Liu W., Wang P. et al. Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution // Physical Review A. 2017. V. 95. № 6. P. 062330. https:doi.org/10.1103/PhysRevA.95.062330

7.    Waddy D.S., Chen L., Bao X. Polarization effects in aerial fibers // Optical Fiber Technology. 2005. V. 11. № 1. P. 1–19. https:doi.org/10.1016/j.yofte.2004.07.002

8.   Waddy D. S., Lu P., Chen L. et al. Fast state of polarization changes in aerial fiber under different climatic conditions // IEEE Photonics Technology Letters. 2001. V. 13. № 9. P. 1035–1037. https:doi.org/10.1109/68.942685

9.   Li D. D., Gao S., Li G.C. et al. Field implementation of long-distance quantum key distribution over aerial fiber with fast polarization feedback // Optics express. 2018. V. 26. № 18. P. 22793–22800. https:doi.org/10.1364/OE.26.022793

10. Wang S., Huang P., Wang T. et al. Dynamic polarization control for free-space continuous-variable quantum key distribution // Optics Letters. 2020. V. 45. № 21. P. 5921–5924. https:doi.org/10.1364/OL.404589

11.  Zhao Y., Zhang Y., Huang Y. et al. Polarization attack on continuous-variable quantum key distribution // Journal of Physics B: Atomic, Molecular and Optical Physics. 2018. V. 52. № 1. P. 015501. https:doi.org/10.1088/1361-6455/aaf0b7

12.  Shao Y., Pan Y., Wang H. et al. Polarization attack on continuous-variable quantum key distribution with a local oscillator // Entropy. 2022. V. 24. № 7. P. 992. https:doi.org/10.3390/e24070992

13.  Geng C., Zhao B., Zhang E. et al. 1.5 kW incoherent beam combining of four fiber lasers using adaptive fiber-optics collimators // IEEE Photonics Technology Letters. 2013. V. 25. № 13. P. 1286–1289. https:doi.org/10.1109/LPT.2013.2263123

14.  Liu W., Cao Y., Wang X. et al. Continuous-variable quantum key distribution under strong channel polarization disturbance // Physical Review A. 2020. V. 102. № 3. P. 032625. https:doi.org/10.1103/PhysRevA.102.032625

15.  Ma X.C., Sun S.H., Jiang M.S. et al. Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems // Physical Review A. 2013. V. 88. № 2. P. 022339. https:doi.org/10.1103/PhysRevA.88.022339

16.       Скалли М.О., Зубайри М.С. Квантовая оптика. Пер. с англ. // Под ред. Самарцева В.В. Москва: ФИЗМАТЛИТ, 2003. 512 с. (Scully M.O., Zubairi M.S. Quantum optics. Translated from English // Ed. Samartsev V.V. Moscow: FIZMATLIT, 2003. 512 p.)