DOI: 10.17586/1023-5086-2023-90-02-78-88
УДК: 621.391
Dynamic range of a coherent optical spectrum analyzer with a liquid-crystal matrix signal-input device
Full text on elibrary.ru
Publication in Journal of Optical Technology
Дюбов А.С., Кузьмин М.С., Рогов С.А. Динамический диапазон когерентного оптического спектроанализатора с жидкокристаллической матрицей для ввода сигналов // Оптический журнал. 2023. Т. 90. № 2. С. 78–88. http:doi.org/10.17586/1023-5086-2023-90-02-78-88
Diubov A.S., Kuzmin M.S., Rogov S.A. Dynamic range of a coherent optical spectrum analyzer with a liquid-crystal matrix signal-input device [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 2. P. 78–88. http:doi.org/10.17586/1023-5086-2023-90-02-78-88
A. S. Diubov, M. S. Kuzmin, and S. A. Rogov, "Dynamic range of a coherent optical spectrum analyzer with a liquid-crystal matrix signal-input device," Journal of Optical Technology. 90(2), 98-104 (2023). https://doi.org/10.1364/JOT.90.000098
Subject of study. The paper investigates the dynamic range of a coherent optical spectrum analyzer with a liquid-crystal signal-input device. Aim of study. The goal is the theoretical and experimental assessment of the false signal levels at the spectrum analyzer output. The purpose is to experimentally determine the value of the dynamic range. Method. A theoretical analysis of the spectral components in the output signal is performed based on the representation of the transmission dependence of a liquid-crystal input device in the light amplitude on the input control signal in the form of an expansion in a series of power functions in proximity of the operating point. The output signals of the spectrum analyzer were experimentally registered and the values of the dynamic range were determined for the cases of one-, two- and three-frequency input signals. Main results. A calculating technique for the false signal levels at the output of an optical spectrum analyzer with a liquid-crystal matrix signal-input device is proposed, and its dynamic range is measured. Practical significance. More than 40 dB dynamic range is achieved for a three-frequency input signal.
optical signal processing, coherent optical spectrum analyzer, dynamic range, liquid-crystal spatial light modulator, raster signal input
OCIS codes: 070.0070, 070.6120, 070.4790, 100.4550, 070.4550
References:1. Terpin T.M. Spectrum analysis using optical processing // Proc. of the IEEE. 1981. V. 69. № 1. P. 79–92. https:doi.org/10.1109/PROC.1981.11922
2. Grinev A.Yu., Naumov K.P., Presleneva L.N., Tigin D.V., Ushakov V.N. Optical devices in radio engineering: Textbook for universities / Ed. by V.N. Ushakov. Ed. 2nd rev. and additional. Mosсow: Radiotehnika, 2009. 264 p.
3. Antonov Yu.G., Aronov L.A., Grachev S.V., Ushakov V.N. Automated complex for monitoring the radio-technical situation on the basis of an acousto-optical spectrometer-phase meter // Radiotechniks. 2009. № 3. P. 92–96.
4. Rozdobudko V.V., Pomazanov A.V., Krikotin S.V., Primak V.P., Buyanov A.B., Shibaev S.S., Novikov V.M. Acousto-optical meter of frequency-time parameters of microwave radio signals // Special equipment. 2011. № 3. P. 8–24.
5. Anishchenko A.V., Rogov S.A., Vysotsky M.G., Katkov B.G., Parfenov V.A., Rozov S.V., Skorokhod V.V., Tutygin V.S., Yuzhakov A.V. Acousto-optoelectronic receiver-spectrum analyzer for measuring parameters of radio signals in real time // Radiotechniks. 2012. № 5. P. 18–24.
6. URL: https://holoeye.com/ (HOLOEYE Photonics AG – Spatial Light Modulators, Diffractive Optics, LCOS Microdisplay Components) (date of application 10.09.2022).
7. Kuzmin M.S., Rogov S.A. Spatial light modulator based on liquid-crystal video projector matrix for information processing systems // Optical Memory & Neural Networks (Information Optics). 2013. V. 22. № 4. P. 261–266. https:doi.org/10.3103/S1060992X13040103
8. Evtikhiev N.N., Starikov S.N., Protsenko E.D., Zlokazov E.Yu., Solyakin I.V., Starikov R.S., Shapkarina E.A., Shaulskiy D.V. Model of an invariant correlator with liquid-crystal spatial light modulators // Quantum Electronics. 2012. Т. 42. № 11. P. 1039–1041. https:doi.org/10.1070/QE2012v042n11ABEH015009
9. Su Zhang, Jin Duan, Qiang Fu, Wen-sheng Wang. Infrared zoom lens design based on target correlation recognition and tracking // Proc. SPIE 9676. AOPC 2015. Optical Design and Manufacturing Technologies. 967607 (15 October 2015). https:doi.org/10.1117/12.2197584
10. Kuz'min M.S., Rogov S.A. Optical Fourier processor with a liquid-crystal information-input device // Journal of Optical Technology. 2015. V. 82. № 3. P. 147–152. https:doi.org/10.1364/JOT.82.000147
11. Kuz’min M.S., Rogov S.A. Effect of spectral recording nonlinearity in a joint transform correlator for recognition of identical patterns // Journal of Optical Technology. 2017. V. 84. № 8. P. 557–561. https:doi.org/10.1364/JOT.84.000557
12. Kuzmin M.S., Rogov S.A. Signal parallel input liquid-crystal devices for multichannel optical processing systems // Optical Memory & Neural Networks (Information Optics). 2016. V. 25. № 2. P. 114–117. https:doi.org/10.3103/S1060992X16020089
13. Casasent D. Optical data processing: Applications. Berlin: Springer-Verlag, 1978. 288 p. https:doi.org/10.1007/BFb0057980
14. Kuzmin M.S., Rogov S.A. A folded-spectrum analyzer with a liquid-crystal input device // Technical Physics Letters. 2014. V. 40. P. 629–631. https:doi.org/10.1134/S1063785014080082
15. Kuz’min M.S., Rogov S.A. Processing of 1D signals with raster input in 2D optical correlators // Technical Physics. 2015. № 60. P. 631–633. https:doi.org/10.1134/S1063784215040179
16. Kuzmin M.S., Davydov V.V., Rogov S.A. On the use of a multi-raster input of one-dimensional signals in two-dimensional optical correlators // Computer Optics. 2019. V. 43. № 3. P. 391–396. https:doi.org/10.18287/2412-6179-2019-43-3-391-396
17. Kuzmin M.S., Rogov S.A. Input of low-frequency signals into optical information processing systems with a liquid crystal matrix input // Proc. of the XI International Conference Photonics and Information Optics. Moscow. NRNU MEPhI. 2022. P. 611–612.
18. Kirill V. Zaichenko, Boris S. Gurevich, Sergey A. Rogov, Anna A. Kordyukova, Vasily M. Kolesov Application of photonics methods for processing bioelectric signals // Proceedings of the XXXII School-Symposium on Holography, Coherent Optics and Photonics. St Petersburg: ITMO University. 2022. P. 108–111.
19. Bronshtein I.N., Semendyayev K.A. A Guide-book to mathematics for engineers and students of higher educational institutions. St Petersburg: Publishing house “Lan”, 2010. 608 p.
20. Dyakonov V. Choice of digital spectrum analyzers taking into account their nonlinearity and level measurements // Components and technologies. 2009. № 9. P. 153–161. 21. Lee J.N., Vanderlugt A. Acoustooptic signal processing and computing // Proc. of IEEE. 1989. V. 77. № 10. P. 1528–1557. https:doi.org/10.1109/5.40667