ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-04-57-67

УДК: 621.315.592

Laser-induced improvement of the photoelectric characteristics of ZnO:Ag thin films

For Russian citation (Opticheskii Zhurnal):

Гресько В.Р., Смирнова В.В., Сергеев М.М., Пушкарева А.Е., Долгополов А.Д., Сокура Л.А., Брюханова В.В. Лазерно-индуцированное улучшение фотоэлектрических характеристик тонких плёнок оксида цинка ZnO с наночастицами серебра Ag // Оптический журнал. 2023. Т. 90. № 4. С. 57–67. http://doi.org/10.17586/1023-5086-2023-90-04-57-67

 

Gresko V.R., Smirnova V.V., Sergeev M.M., Pushkareva A.E., Dolgopolov A.D., Sokura L.A., Bryukhanov V.V. Laser-induced improvement of the photoelectric characteristics of ZnO:Ag thin films [ In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 4. P. 57–67. http://doi.org/10.17586/1023-5086-2023-90-04-57-67

For citation (Journal of Optical Technology):

Test

Abstract:

Subject of study. The paper considers the results of studies of the influence of the power density of continuous wave laser radiation on the optical and electrical characteristics of ZnO thin films with silver nanoparticles. Aim of study. Improving the photoelectric characteristics of ZnO:Ag films by laser treatment to increase the efficiency of ultraviolet radiation’s photodetection. Method. Modification of the properties of ZnO:Ag films was carried out using focused radiation with a wavelength of 405 nm in the scanning mode. The films were examined using optical and electron microscopy. Electrical resistance, dark current, and photocurrent arising from exposure to radiation with a wavelength of 343 nm were measured using a multimeter. Main results. It was found that the ratio of photocurrent to dark current after exposure to radiation with a power density of 16 W/cm2 increased from 4.8 to 7.4. The plasmon characteristics of the composite film changed, the plasmon resonance peak shifted between 580 nm and 480 nm with increasing power density. The chemical composition of the film changed insignificantly as a result of laser exposure. In this case, as the power density increased, the film acquired a porous structure. Practical significance. The results obtained can be used to improve the efficiency of ultraviolet laser or solar radiation photodetectors based on ZnO:Ag films.

 

Acknowledgment: the work was carried out at the expense of a grant from the Russian Science Foundation (Project № 19­79­10208).

Keywords:

ZnO thin films, silver nanoparticles, photosensitivity, laser action, photodetection

OCIS codes: 160.5140.

References:
  1. Hosono H., Ueda K. Transparent conductive oxides // In Springer Handbook of Electronic and Photonic Materials / Eds. Kasap S., Capper P. Berlin/Heidelberg: Springer, 2017. P. 1391–1404. https://doi.org/10.1007/978­3­319­48933­9_58
  2. Rwenyagila E.R., Agyei­Tuffour B., Zebaze Kana M.G., Akin­Ojo O., Soboyejo W.O. Optical properties of ZnO/Al/ZnO multilayer films for large area transparent electrodes // Journal of Materials Research. 2014. V. 29. № 24. P. 2912–2920. https://doi.org/10.1557/jmr.2014.298
  3. Islam M.M., Ishizuka S., Yamada A., Matsubara K., Niki S., Sakurai T. et al. Thickness study of Al:ZnO film for application as a window layer in Cu(In1–xGax)Se2 thin film solar cell // Applied Surface Science. 2011. V. 257. № 9. P. 4026–4030. https://doi.org/10.1016/j.apsusc.2010.11.169
  4. Karimi­Maleh H., Kumar B.G., Rajendran S., Qin J., Vadivel S., Durgalakshmi D. et al. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration // Journal of Molecular Liquids. 2020. V. 314. P. 113588. https://doi.org/10.1016/j.molliq.2020.113588
  5. Castro­Chacón J.H., Torres­Torres C., Khomenko A.V., García­Zárate M.A., Trejo­Valdez M., Martínez­Gutiérrez H., Torres­Martínez R. Encryption of nonlinear optical signals in ZnO: Al thin films by ultrashort laser pulses // Journal of Modern optics. 2017. V. 64. № 6. P. 601–608. https://doi.org/10.1080/09500340.2016.1253880
  6. Liu K., Sakurai M., Aono M. ZnO­based ultraviolet photodetectors // Sensors. 2010. V. 10. № 9. P. 8604–8634. https://doi.org/10.3390/s100908604
  7. Li Q., Huang J., Meng J., Li Z. Enhanced performance of a self­powered ZnO photodetector by coupling LSPR­inspired pyro­phototronic effect and piezo­phototronic effect // Advanced Optical Materials. 2022. V. 10. № 7. P. 2102468. https://doi.org/10.1002/adom.202102468
  8. Singh S., Park S.H. Fabrication and characterization of Al:ZnO based MSM ultraviolet photodetectors // Superlattices and Microstructures. 2015. V. 86. P. 412–417. https://doi.org/10.1016/j.spmi.2015.08.019
  9. Klochko N.P., Klepikova K.S., Khrypunova I.V., Kopach V.R., Tyukhov I.I., Petrushenko S.I., Dukarov S.V., Sukhov V.M., Kirichenko M.V., Khrypunova A.L. Solution­processed flexible broadband ZnO photodetector modified by Ag nanoparticles // Solar Energy. 2022. V. 232. P. 1–11. https://doi.org/10.1016/j.solener.2021.12.051
  10. Tzeng S.­K., Hon M.­H., Leu I.­C. Improving the performance of a Zinc Oxide nanowire ultraviolet photodetector by adding silver nanoparticles // Journal of the Electrochemical Society. 2012. V. 159. № 4. P. H440. https://doi.org/10.1149/2.088204jes
  11. Kim D., Leem J.Y. Crystallization of ZnO thin films via thermal dissipation annealing method for high­performance UV photodetector with ultrahigh response speed // Scientific reports. 2021. V. 11. № 1. P. 1–10. https://doi.org/10.1038/s41598­020­79849­z
  12. Nian Q., Zhang M.Y., Schwartz B.D., Cheng G.J. Ultraviolet laser crystallized ZnO:Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency // Applied Physics Letters. 2014. V. 104. № 20. P. 201907. https://doi.org/10.1063/1.4879643
  13. Destouches N., Crespo­Monteiro N., Vitrant G., Lefkir Y., Reynaud S., Epicier T., Liu Y., Vocanson F., Pigeon F. Self­organized growth of metallic nanoparticles in a thin film under homogeneous and continuous­wave light excitation // Journal of Materials Chemistry. 2014. V. 2. № 31. P. 6256–6263. https://doi.org/10.1039/C4TC00971A
  14. Zhang M.Y., Cheng G.J. Highly conductive and transparent alumina­doped ZnO films processed by direct pulsed laser recrystallization at room temperature // Applied Physics Letters. 2011. V. 99. № 5. С. 051904. https://doi.org/10.1063/1.3622645
  15. Sokura L.A., Shirshneva­Vaschenko E.V., Kirilenko D.A., Snezhnaia Z.G., Shirshnev P.S., Romanov A.E. Electron­microscopy study of ordered silver nanoparticles synthesized in a ZnO: Al polycrystalline film // Journal of Physics: Conference Series. IOP Publishing. 2019. V. 1410. № 1. P. 012170. http://doi.org/10.1088/1742­6596/1410/1/012170
  16. Hong C.S., Park H.H., Park H.H., Chang H.J. Optical and electrical properties of ZnO thin film containing nano­sized Ag particles // Journal of Electroceramics. 2009. V. 22. № 4. С. 353–356. https://doi.org/10.1007/s10832­008­9526­y
  17. Zhao Y., Jiang Y. Effect of KrF excimer laser irradiation on the properties of ZnO thin films // Journal of Applied Physics. 2008. V. 103. № 11. P. 114903. https://doi.org/10.1063/1.2931005
  18. Zhang M.Y., Cheng G.J. Highly conductive and transparent alumina­doped ZnO films processed by direct pulsed laser recrystallization at room temperature // Applied Physics Letters. 2011. V. 99. № 5. P. 051904. https://doi.org/10.1063/1.3622645