ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-07-05-14

УДК: 681.7.063

Inscription study of superimposed chirped fiber Bragg gratings

For Russian citation (Opticheskii Zhurnal):

Волошина А.Л., Дмитриев А.А., Варжель С.В., Куликова В.А., Козлова А.И., Калязина Д.В. Исследование динамики записи суперпозиций чирпированных волоконных брэгговских решеток // Оптический журнал. 2023. Т. 90. № 7. С. 5–14. http://doi.org/10.17586/1023-5086-2023-90-07-05-14

 

Voloshina A.L., Dmitriev A.A., Varzhel S.V., Kulikova V.A., Kozlova A.I., Kaliazina D.V. Inscription study of superimposed chirped fiber Bragg gratings [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 7. P. 5–14. http://doi.org/10.17586/1023-5086-2023-90-07-05-14

For citation (Journal of Optical Technology):

Anna L. Voloshina, Andrei A. Dmitriev, Sergey V. Varzhel, Varvara A. Kulikova, Alexandra I. Kozlova, and Daria V. Kaliazina, "Inscription study of superimposed chirped fiber Bragg gratings," Journal of Optical Technology. 90(7), 356-361 (2023). https://doi.org/10.1364/JOT.90.000356

Abstract:

Subject of study. The change in the spectral characteristics of superimposed chirped fiber Bragg gratings during their inscription is analyzed. Aim of study. Investigation of the dynamics of changes in the spectral characteristics of chirped fiber Bragg gratings during inscription is performed. Method. Using a KrF excimer laser system and a Talbot interferometer, the diffractive structures consisting of four chirped Bragg gratings with a period variable in length are inscribed in a standard telecommunication single-mode optical fiber (G.657.A2). During the inscription of the fiber structures, the change in the spectral characteristics is estimated depending on the total irradiation dose. Main results. The dependences of the change in the reflection coefficient, the full width at half maximum of the spectral response, and the Bragg resonance wavelength of each chirped Bragg grating of the superimposed structure on the total dose of irradiation are demonstrated. Numerical values of the spectral characteristics’ modulation are given. Practical significance. The results of the work are important in the field of fiber optics, especially in the develop of fiber-optic devices based on Bragg reflectors. The analysis demonstrates the dependences of the change in the spectral characteristics of fiber structures during inscription. The study can be used to optimize the develop of fiber-optic devices based on superimposed chirped Bragg gratings, which allows achieving the required diffractive structures characteristics with high accuracy.

Keywords:

chirped fiber Bragg gratings, inscription of fiber Bragg gratings, Talbot interferometer, superimposed fiber Bragg gratings, spectral parameters

Acknowledgements:

The work was financially supported by the Priority 2030 program using a unique scientific installation № 506865 "Multifunctional installation for interferometric recording of fiber Bragg gratings and special structures based on them".

OCIS codes: 060.0060, 060.2310, 060.3735

References:

1. Deng J., Li Y., Shen M., et al. Single-frequency random distributed bragg reflector fiber laser // J. Lightwave Technol. 2022. V. 40. № 13. P. 4385–4390. https://doi.org/10.1109/jlt.2022.3160490
2. Wang Ch., Li X., Zhang Sh., et al. Wavelength and bandwidth tunable filter and its application in a dissipative soliton fiber laser // Opt. Lett. 2022. V. 47. № 11. P. 2698–2701. https://doi.org/10.1364/OL.460051
3. Hunter D.B. and Minasian R.A. Microwave optical filters using in-fiber Bragg grating arrays // IEEE Microwave and Guided Wave Lett. 1996. V. 6. № 2. P. 103. https://doi.org/10.1109/75.482003
4. Dmitriev A.A., Varzhel S.V., Grebnev K.V., et al. Strain gauge based on n-pairs of chirped fiber Bragg gratings // Opt. Fiber Technol. 2022. V. 70. P. 102893. https://doi.org/10.1016/j.yofte.2022.102893
5. Dmitriev A.A., Grebnev K.V., Varzhel S.V., et al. A fiber optic vibration sensor based on SMF-MMF-SMF structure and a tilted fiber Bragg grating [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2021. V. 21. № 6. P. 801–807. https://doi.org/10.17586/2226-1494-2021-21-6-801-807
6. Moor Ia.D., Konnov K.A., Plotnikov M.Yu., et al. High-precision fiber-optic temperature sensor based on Fabry–Perot interferometer with reflective thin-film multilayer structures [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2022. V. 22. № 3. P. 442–449. https://doi.org/10.17586/2226-1494-2022-22-3-442-449
7. Novikova V.A., Varzhel S.V., Tokareva I.D., et al. Liquid flow motion rate measuring method, based on the fiber Bragg gratings // Opt. and Quant. Electron.
2020. V. 52. P. 132. https://doi.org/10.1007/s11082-020-2257-2
8. Zhang H., Jiang J., Liu S., et al. Overlap spectrum fiber Bragg grating sensor based on light power demodulation // Sensors (Switzerland). 2018. V. 18. № 5. P. 1597. https://doi.org/10.3390/s18051597
9. Mikhneva A.A., Gribaev A.I., Varzhel' S.V., et al. Inscription and investigation of the spectral characteristics of chirped fiber Bragg gratings // J. Opt. Technol. 2018. V. 85. № 9. P. 531–534. https://doi.org/10.1364/JOT.85.000531

10. Konnov K.A., Slozhenikina Yu.I., Gribaev A.I., et al. Inscription process research and optimization for superimposed fiber Bragg gratings [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2017. V. 17. №. 6. P. 1004–1010. https://doi.org/10.17586/2226-1494-2017-17-6-1004-1010
11. Idrisov R. F., Gribaev A. I., Stam A. M., et al. A. Inscription of superimposed fiber Bragg gratings using a Talbot interferometer // J. Opt. Technol. 2017.
V. 84. № 10. P. 694–697. https://doi.org/10.1364/JOT.84.000694
12. Dmitriev A.A., Gribaev A.I., Varzhel S.V., et al. Highperformance fiber Bragg gratings arrays inscription method // Opt. Fiber Technol. 2021. V. 63. P. 102508. https://doi.org/10.1016/J.YOFTE.2021.102508
13. Gribaev A.I., Pavlishin I.V., Stam A.M., et al. Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer // Opt. Quant. Electron. 2016. V. 48. P. 540. https://doi.org/10.1007/s11082-016-0816-3
14. Neustruev V.B. Electrostriction mechanism of Bragg grating formation in germanosilicate fibres // Quant. Electron. 2001. V. 31. № 11. P. 1003. https://doi.org/10.1070/QE2001v031n11ABEH002092
15. Varzhel S.V. Fiber Bragg gratings [in Russian]. St. Petersburg: ITMO University, 2015. 65 p.