DOI: 10.17586/1023-5086-2023-90-08-03-16
УДК: 621.373.826; 681.7.069.24
Single-mode lasing in ring cavity surface emitting lasers
Full text on elibrary.ru
Publication in Journal of Optical Technology
Бабичев А.В., Колодезный Е.С., Гладышев А.Г. и др. Одночастотная генерация в квантово-каскадных лазерах с кольцевым резонатором // Оптический журнал. 2023. Т. 90. № 8. С. 3–16. http://doi.org/10.17586/1023-5086-2023-90-08-03-16
Babichev A.V., Kolodeznyi E.S., Gladyshev A.G., Kharin N.Yu., Panevin V.Yu., Shalygin V.A., Voznyuk G.V., Mitrofanov M.I., Slipchenko S.O., Lyutetskii A.V., Evtikhiev., V.P., Karachinsky L.Ya, Novikov I.I., Pikhtin N.A., Egorov A.Yu. Single-mode lasing in ring cavity surface emitting lasers (In Russian) // Opticheskii Zhurnal. 2023. V. 90. № 8. P. 3–16. http: doi.org/10.17586/1023-5086-2023-90-08-03-16
Subject of study. Distributed-feedback ring cavity surface emitting quantum-cascade lasers. Aim of study. Realization of stable single-mode emission in ring cavity surface emitting quantum-cascade lasers through a Bragg grating formed by direct ion lithography. Method. Implementation of the selection of longitudinal whispering gallery modes due to the fabrication of a second-order Bragg grating in the top waveguide cladding layers based on InP using direct (focused) ion-beam lithography. Main results. The possibility of implementing stable single-mode emission in distributed-feedback ring cavity surface emitting quantum-cascade lasers with a Bragg grating formed by direct ion-beam lithography is demonstrated. An increase in the etching depth of the grooves of the Bragg grating to 2.8 µm made it possible to implement stable single-mode emission at a temperature of 83 K. Single-mode emission is observed at a wavelength of 7.45 µm with a threshold current density of approximately 2 kA/cm2. The maximum side mode suppression ratio was 25 dB. Practical significance. Single-mode distributed-feedback ring cavity surface emitting quantum-cascade lasers are promising for the creation of compact gas sensors, in which a laser and a photodetector of the mid-infrared spectral range are monolithically integrated on one chip.
superlattices, quantum-cascade laser, distributed-feedback ring cavity, single-mode lasing, indium phosphide
Acknowledgements:the authors from ITMO University (Babichev A.V., Kolodeznyi E.S., Gladyshev A.G.) acknowledge support in part by the Russian Science Foundation (Project No. 20-79-10285, https://rscf.ru/project/20-79-10285/) for the heterostructure epitaxy, laser fabrication and output characteristic study. The authors from ITMO University (Karachinsky L.Ya., Novikov I.I.) acknowledge support in part by Advanced Engineering Schools Federal Project for the study by scanning electron microscopy. The author from ITMO University (Shalygin V.A.) acknowledge supports in part by the Russian Science Foundation (Project No. 21-12-00304, https://rscf.ru/project/21-12-00304/) for the optimizing the etching modes of Bragg grating grooves.
OCIS codes: 140.3410, 140.3570, 140.5965
References:1. Xie F., Caneau C., LeBlanc H.P., Coleman S., Hughes L.C., Zah C.E. Continuous wave operation of distributed feedback quantum cascade lasers with low threshold voltage and low power consumption // SPIE OPTO. San Francisco, California, United States. 21–26 January 2012. V. 8277. P. 125–131. https://doi.org/10.1117/12.920055
2. QD7416HH. 7416 nm DFB Quantum Cascade Laser, 20 mW (Min) [Electronic resource]. Available online: https://www.thorlabs.com/drawings/5e324d75d3068cd1-31FC2AD1-E660-3114-F43AC42D6A32C35F/QD7416HH-SpecSheet.pdf (accessed on 05.04.2023).
3. Xie F., Caneau C.G., LeBlanc H.P., Visovsky N.J., Coleman S., Hughes L.C., Zah C.E. High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum-cascade lasers at l ≈ 5.2 µm // Applied Physics Letters. 2009. V. 95. № 9. Art. No. 091110. https://doi.org/10.1063/1.3216074
4. CW Quantum Cascade Laser L12007-1354H-C. [Electronic resource]. Available online: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/lpd/L12007-1354H-C_E.pdf (accessed on 05.04.2023).
5. Blaser S., Bonetti Y., Hvozdara L., Muller A., Giovannini M., Hoyler N., Beck M., Faist J. High-power and single-frequency quantum cascade lasers for gas sensing // Laser Radar Technology for Remote Sensing. Barcelona, Spain, 8–12 September 2003. V. 5240. P. 137–141. https://doi.org/10.1117/12.511151
6. Bertrand M., Shlykov A., Shahmohamadi M., Beck M., Willitsch S., Faist J. High-power, narrow-linewidth distributed-feedback quantum-cascade laser for molecular spectroscopy // Photonics. 2022. V. 9. № 8. Art. No. 589. https://doi.org/10.3390/photonics9080589
7. Lee B.G., Belkin M.A., Pflugl C. et al. DFB quantum cascade laser arrays // IEEE Journal of Quantum Electronics. 2009. V. 45. № 5. P. 554–565. https://doi.org/10.1109/JQE.2009.2013175
8. Colombelli R., Srinivasan K., Troccoli M., Painter O., Gmachl C.F., Tennant D.M., Sergent A.M., Sivco D.L., Cho A.Y., Capasso F. Quantum cascade surface-emitting photonic crystal laser // Science. 2003. V. 302. № 5649. P. 1374–1377. https://doi.org/10.1126/science.1090561
9. Wu D.H., Razeghi M. High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation // APL Materials. 2017. V. 5. № 3. Art. No. 035505. https://doi.org/10.1063/1.4978810
10. Kapsalidis F., Shahmohammadi M., Süess M.J., Wolf J.M., Gini E., Beck M., Hundt M., Tuzson B., Emmenegger L., Faist J. Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy // Applied Physics B. 2018. V. 124. № 6. Art. No. 107. https://doi.org/10.1007/s00340-018-6973-2
11. Bismuto A., Bidaux Y., Blaser S., Terazzi R., Gresch T., Rochat M., Muller A., Bonzon C., Faist J. High power and single mode quantum cascade lasers // Optics Express. 2016. V. 24. № 10. P. 10694–10699. https://doi.org/10.1364/OE.24.010694
12. Liu P.Q., Wang X., Fan J.-Y., Gmachl C.F. Single-mode quantum cascade lasers based on a folded Fabry–Perot cavity // Applied Physics Letters. 2011. V. 98. № 6. Art. No. 061110. https://doi.org/10.1063/1.3554757
13. Cendejas R.A., Liu Z., Sánchez-Vaynshteyn W., Caneau C.G., Zah C.E., Gmachl C. Cavity length scaling of quantum cascade lasers for single-mode emission and low heat dissipation, room temperature, continuous wave operation // IEEE Photonics Journal. 2011. V. 3. № 1. P. 71–81. https://doi.org/10.1109/JPHOT.2010.2103376
14. Yu J.S., Slivken S., Darvish S.R., Evans A., Gokden B., Razeghi M. High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at l ≈ 4.8 µm // Applied Physics Letters. 2005. V. 87. № 4. Art. No. 041104. https://doi.org/10.1063/1.2000343
15. Zhou W., Bandyopadhyay N., Wu D., McClintock R., Razeghi M. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design // Scientific Report. 2016. V. 6. № 1. Art. No. 25213. https://doi.org/10.1038/srep25213
16. Süess M.J., Hundt P.M., Tuzson B., Riedi S., Wolf J.M., Peretti R., Beck M., Looser H., Emmenegger L., Faist J. Dual-section DFB-QCLs for multispecies trace gas analysis // Photonics. 2016. V. 3. № 2. Art. No. 24. https://doi.org/10.3390/photonics3020024
17. Single mode distributed feedback quantum cascade laser at 674 cm–1. [Electronic resource]. Available online: https://www.rpmclasers.com/wp-content/uploads/2021/09/R2Z0-Datasheet-Unimir-UN0628C003HNA.pdf (accessed on 05.04.2023).
18. 7.43 µm distributed feedback (DFB) QCL. [Electronic resource]. Available online: http://atoptics.com/pdf/HHL/Specs%20HHL%207.43um.pdf (accessed on 05.04.2023).
19. CW Quantum Cascade Laser L12007-1294H-C. [Electronic resource]. Available online: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/lpd/L12007-1294H-C_E.pdf (accessed on 05.04.2023).
20. DFB Quantum cascade lasers. [Electronic resource]. Available online: https://nanoplus.com/fileadmin/user_upload/Data_sheets/nanoplus_DFB_Standard_6000-14000nm.pdf (accessed on 05.04.2023).
21. Datasheet for #sb343 DN. [Electronic resource]. Available online: https://alpeslasers.ch/lasers-on-stock/sb343.pdf (accessed on 05.04.2023).
22. Yao Y., Hoffman A.J., Gmachl C.F. Mid-infrared quantum cascade lasers // Nature Photonics. 2012. V. 6. № 7. P. 432–439. https://doi.org/10.1038/nphoton.2012.143
23. Babichev A., Blokhin S., Gladyshev A. et al. Single-mode high-speed 1550 nm wafer fused VCSELs for narrow WDM systems // IEEE Photonics Technology Letters. 2023. V. 35. № 6. P. 297–300. https://doi.org/10.1109/lpt.2023.3241001
24. Liang Y., Wang Z., Wolf J., Gini E., Beck M., Meng B., Faist J., Scalari G. Room temperature surface emission on large-area photonic crystal quantum cascade lasers // Applied Physics Letters. 2019. V. 114. № 3. Art. No. 031102. https://doi.org/10.1063/1.5082279
25. Hofstetter D., Faist J., Beck M., Oesterle U. Surface-emitting 10.1 µm quantum-cascade distributed feedback lasers // Applied Physics Letters. 1999. V. 75. № 24. P. 3769–3771. https://doi.org/10.1063/1.125450
26. Jouy P., Bonzon C., Wolf J., Gini E., Beck M., Faist J. Surface emitting multi-wavelength array of single frequency quantum cascade lasers // Applied Physics Letters. 2015. V. 106. № 7. Art. No. 071104. https://doi.org/10.1063/1.4913203
27. Boyle C., Sigler C., Kirch J.D., Lindberg III D.F., Earles T., Botez D., Mawst L.J. High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode // Applied Physics Letters. 2016. V. 108. № 12. Art. No. 121107. https://doi.org/10.1063/1.4944846
28. Süess M.J., Jouy P., Bonzon C., Wolf J.M., Gini E., Beck M., Faist J. Single-mode quantum cascade laser array emitting from a single facet // IEEE Photonics Technology Letters. 2016. V. 28. № 11. P. 1197–1200. https://doi.org/10.1109/LPT.2016.2533443
29. Ryu J.H., Sigler C., Kirch J.D., Earles T., Botez D., Mawst L.J. Fabrication-tolerant design for high-power, single-lobe, surface-emitting quantum cascade lasers // IEEE Photonics Technology Letters. 2021. V. 33. № 16. P. 820–823. https://doi.org/10.1109/lpt.2021.3074330
30. Stark D., Kapsalidis F., Wang Z., Bertrand M., Wang R., Meng B., Gini E., Beck M., Faist J. Low threshold quantum cascade surface emitting lasers // SPIE OPTO. San Francisco, California, United States. 28 January – 3 February 2023. V. PC12430. Art. No. PC124300D. https://doi.org/10.1117/12.2646487
31. Babichev A., Blokhin S., Kolodeznyi E. et al. Long-wavelength VCSELs: Status and prospects // Photonics. 2023. V. 10. № 3. Art. No. 268. https://doi.org/10.3390/photonics10030268
32. Blokhin S.A., Babichev A.V., Gladyshev A.G. et al. High power single mode 1300-nm superlattice based VCSEL: impact of the buried tunnel junction diameter on performance // IEEE Journal of Quantum Electronics. 2022. V. 58. № 2. Art. No. 2400115. https://doi.org/10.1109/JQE.2022.3141418
33. Xu G., Moreau V., Chassagneux Y., Bousseksou A., Colombelli R., Patriarche G., Beaudoin G., Sagnes I. Surface-emitting quantum cascade lasers with metallic photonic-crystal resonators // Applied Physics Letters. 2009. V. 94. № 22. Art. No. 221101. https://doi.org/10.1063/1.3143652
34. Mujagić E., Nobile M., Detz H., Schrenk W., Chen J., Gmachl C., Strasser G. Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers // Applied Physics Letters. 2010. V. 96. № 3. Art. No. 031111. https://doi.org/10.1063/1.3292021
35. Mujagić E., Schwarzer C., Yao Y., Chen J., Gmachl C., Strasser G. Two-dimensional broadband distributed-feedback quantum cascade laser arrays // Applied Physics Letters. 2011. V. 98. № 14. Art. No. 141101. https://doi.org/10.1063/1.3574555
36. Yao D.-Y., Zhang J.-C., Liu F.-Q., Zhuo N., Yan F.-L., Wang L.-J., Liu J.-Q., Wang Z.-G. Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 °C at l ≈ 4.6 µm // Applied Physics Letters. 2013. V. 103. № 4. Art. No. 041121. https://doi.org/10.1063/1.4816722
37. Moser H., Genner A., Ofner J., Schwarzer C., Strasser G., Lendl B. Application of a ring cavity surface emitting quantum cascade laser (RCSE-QCL) on the measurement of H2S in a CH4 matrix for process analytics // Optics Express. 2016. V. 24. № 6. P. 6572–6585. https://doi.org/10.1364/oe.24.006572
38. Schwarzer C., Mujagić E., Zederbauer T. et al. Two dimensional integration of ring cavity surface emitting quantum cascade lasers // AIP Conference Proceedings. 2011. V. 1416. № 1. P. 49–51. https://doi.org/10.1063/1.3671695
39. Bai Y., Tsao S., Bandyopadhyay N., Slivken S., Lu Q.Y., Caffey D., Pushkarsky M., Day T., Razeghi M. High power, continuous wave, quantum cascade ring laser // Applied Physics Letters. 2011. V. 99. № 26. Art. No. 261104. https://doi.org/10.1063/1.3672049
40. Mujagić E., Hoffmann L.K., Schartner S., Nobile M., Schrenk W., Semtsiv M.P., Wienold M., Masselink W.T., Strasser G. Low divergence single-mode surface emitting quantum cascade ring lasers // Applied Physics Letters. 2008. V. 93. № 16. Art. No. 161101. https://doi.org/10.1063/1.3000630
41. Piccardo M., Schwarz B., Kazakov D. et al. Frequency combs induced by phase turbulence // Nature. 2020. V. 582. № 7812. P. 360–364. https://doi.org/10.1038/s41586-020-2386-6
42. Guo Q., Zhang J., Yin R., Zhuo N., Lu Q., Zhai S., Liu J., Wang L., Liu S., Liu F. Continuous-wave microcavity quantum cascade lasers in whispering-gallery modes up to 50 °C // Optics Express. 2022. V. 30. № 13. P. 22671–22678. https://doi.org/10.1364/oe.458589
43. Guo Q., Zhang J., Ning C., Zhuo N., Zhai S., Liu J., Wang L., Liu S., Jia Z., Liu F. Continuous-wave operation of microcavity quantum cascade lasers in whispering-gallery mode // ACS Photonics. 2022. V. 9. № 4. P. 1172–1179. https://doi.org/10.1021/acsphotonics.1c01437
44. Szedlak R., Hayden J., Martín-Mateos P. et al. Surface emitting ring quantum cascade lasers for chemical sensing // Optical Engineering. 2017. V. 57. № 1. Art. No. 011005. https://doi.org/10.1117/1.oe.57.1.011005
45. Schwarz B., Wang C.A., Missaggia L., Mansuripur T.S., Chevalier P., Connors M.K., McNulty D., Cederberg J., Strasser G., Capasso F. Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector // ACS Photonics. 2017. V. 4. № 5. P. 1225–1231. https://doi.org/10.1021/acsphotonics.7b00133
46. Lu Q. Y., Bai Y., Bandyopadhyay N., Slivken S., Razeghi M. Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output // Applied Physics Letters. 2010. V. 97. № 23. Art. No. 231119. https://doi.org/10.1063/1.3525859
47. Hinkov B., Hayden J., Szedlak R., Martin-Mateos P., Jerez B., Acedo P., Strasser G., Lendl B. High frequency modulation and (quasi) single-sideband emission of mid-infrared ring and ridge quantum cascade lasers // Optics Express. 2019. V. 27. № 10. P. 14716–14724. https://doi.org/10.1364/oe.27.014716
48. Boulley L., Maroutian T., Goulain P., Babichev A., Egorov A., Li L., Linfield E., Colombelli R., Bousseksou A. Low temperature deposition of vanadium dioxide on III–V semiconductors and integration on mid-infrared quantum cascade lasers // AIP Advances. 2023. V. 13. № 1. Art. No. 015315. https://doi.org/10.1063/5.0111159
49. Cherotchenko E.D., Dudelev V.V., Mikhailov D.A. et al. Observation of long turn-on delay in pulsed quantum cascade lasers // Journal of Lightwave Technology. 2022. V. 40. № 7. P. 2104–2110. https://doi.org/10.1109/jlt.2021.3134837
50. Cherotchenko E., Dudelev V., Mikhailov D. et al. High-power quantum cascade lasers emitting at 8 µm: technology and analysis // Nanomaterials. 2022. V. 12. № 22. Art. No. 3971. https://doi.org/10.3390/nano12223971
51. Brandstetter M., Genner A., Schwarzer C., Mujagic E., Strasser G., Lendl B. Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy // Optics Express. 2014. V. 22. № 3. P. 2656–2664. https://doi.org/10.1364/oe.22.002656
52. Babichev A.V., Kolodeznyi E.S., Gladyshev A.G. et al. Surface emitting quantum-cascade lasers with a second-order grating and increased coupling coefficient // Bulletin of the Russian Academy of Sciences: Physics. 2023. V. 87. № 6. P. 750–754. https://doi.org/10.3103/S1062873823702155
53. Babichev A.V., Pashnev D.A., Gladyshev A.G. et al. Spectral characteristics of half-ring quantumcascade lasers // Optics and Spectroscopy. 2020. V. 128. № 8. P. 1187–1192. https://doi.org/10.1134/s0030400x20080068
54. Mujagić E., Schwarzer C., Schrenk W., Chen J., Gmachl C., Strasser G. Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays // Semiconductor Science and Technology. 2010. V. 26. № 1. Art. No. 014019. https://doi.org/10.1088/0268-1242/26/1/014019
55. Mujagic E., Schwarzer C., Nobile M., Detz H., Ahn S., Klang P., Andrews A.M., Schrenk W., Deutsch C., Unterrainer K., Chen J., Gmachl C., Strasser G. Ring resonator-based surface emitting quantum cascade lasers // SPIE OPTO. San Francisco, California, United States. 23–28 January 2010. V. 7616. Art. No. 76161Q. https://doi.org/10.1117/12.842703
56. Babichev A.V., Mikhailov D.A., Kolodeznyi E.S. et al. Surface-emitting quantum-cascade lasers with a grating formed by focused ion beam milling // Semiconductors. 2022. V. 56 № 9. P. 689–694. https://doi.org/10.21883/sc.2022.09.54136.9857
57. Babichev A.V., Gladyshev A.G., Kurochkin A.S. et al. Room temperature lasing of single-mode arched-cavity quantum-cascade lasers // Technical Physics Letters. 2019. V. 45. № 4. P. 398–400. https://doi.org/10.1134/s1063785019040205
58. Liu P.Q., Sladek K., Wang X., Fan J.-Y., Gmachl C.F. Single-mode quantum cascade lasers employing a candy-cane shaped monolithic coupled cavity // Applied Physics Letters. 2011. V. 99. № 24. Art. No. 241112. https://doi.org/10.1063/1.3664117