DOI: 10.17586/1023-5086-2023-90-08-96-110
Rain attenuation analysis of radio over free space optics system considering diverse regions
Full text on elibrary.ru
Publication in Journal of Optical Technology
Sanmukh Kaur, Jasleen Kaur. Rain attenuation analysis of radio over free space optics system considering diverse regions (Анализ ослабления сигнала в радиосистемах на основе беспроводной оптической связи в дождевых условиях с учётом климатических особенностей региона [на англ. языке] // Оптический журнал. 2023. Т. 90. № 8. С. 96–110. http://doi.org/10.17586/1023-5086-2023-90-08-96-110
Sanmukh Kaur, Jasleen Kaur. Rain attenuation analysis of radio over free space optics system considering diverse regions [in English] // Opticheskii Zhurnal. 2023. V. 90. № 8. P. 96–110. http://doi.org/10.17586/1023-5086-2023-90-08-96-110
Subject of study. In post-pandemic world connectivity plays an important role and is one of the biggest assets for economy. Radio over free space optics is one of the most in-demand wireless communication technology solutions for 5G deployment in the upcoming era of a fast-moving world. Purpose of the work: To analyze the performance of radio over free space optics link under the rain weather conditions. Method. In this research, diverse geographical rain conditions for different terrains of India have been analyzed for monsoon months using Marshall and Palmer rain attenuation model. Main results. Based on the real rain rate data analysis, it has been observed that an effective link range of up to 4 km may be achieved with an acceptable signal/noise ratio and bit error rate of 20 dB and 10–9 respectively even for the coastal region with heavy rainfall. Practical significance: As rain is one of the dominant weather conditions affecting free space optics link, the proposed model employing orthogonal frequency-division multiplexing based QAM-64 and PSK-16 modulation schemes at a data rate 20 Gbps is able to limit the degrading effects of the channel.
radio over free space optics, signal/noise ratio, bit error rate,rain attenuation
OCIS codes: 060.2605, 060.4510, 140.0140, 010.1300.
References:1. Amphawan A., Chaudhary S., Neo T.K., Kakavand M., Dabbagh M. Radio-over-free space optical space division multiplexing system using 3-core photonic crystal fiber mode group multiplexers // Wireless Networks. 2021. V. 27. № 1. P. 211–225.https://doi.org/10.1007/s11276-020-02447-4
2. Zhang Z., Xiao Y., Ma Z. 6G wireless networks vision, requirements, architecture, and key technologies // IEEE Vehicular Technology Magazine.2019. V. 14. № 3. P. 28–41. http://doi: 10.1109/MVT.2019.2921208
3. Esmail M.A., Fathallah H., Alouini M.-S. Outdoor FSO communications under fog: Attenuation modeling and performance evaluation // IEEE Photonics Journal. 2016. V. 18. №8(4). P. 1–22.http://doi:10.1109/JPHOT.2016.2592705.
4. Ullah H., Nair N.G., Moore A., Nugent C. et al. 5G communication: An overview of vehicle-to-everything, drones, and healthcare use-cases // IEEE Access. 2019. P. 1-1. https://doi.org/ 10.1109/ACCESS.2019.2905347
5. Hamza A.S., Deogun J.S., Alexander D.R. Classification framework for free space optical communication links and systems // IEEE Communications Surveys & Tutorials.2019. V. 21. № 2. P. 1346–1382. https://doi.org/ 10.1109/COMST.2018.2876805
6. Singh H., Mittal N., Miglani R., Singh H., Gaba G.S., Hedabou M. Design and analysis of high-speed free space optical (FSO) communication system for supporting Fifth Generation (5G) data services in diverse geographical locations of India // IEEE Photonics Journal.2021. V. 13. № 5. P. 1–12. Oct. Art no. 7300312. https://doi.org/ 10.1109/JPHOT.2021.311365
7. Kumar A., Krishnan P. RoFSO system based on BCH and RS coded BPSK OFDM for 5G applications in smart cities // Optical and Quantum Electronics. 2022.V. 54(1). P. 1–6. https://doi.org/10.1007/s11082-021-03392-y
8. Sabu S., Renimol S., Abhiram D., Premlet B. Effect of rainfall on cellular signal strength: A study on the variation of RSSI at user end of smartphone during rainfall // 2017 IEEE Region 10 Symposium. 2017. P. 1–4. https://doi.org/ 10.1109/TENCONSpring.2017.8070024
9. Alheadary W.G., Park K.H., Alfaraj N., Guo Y. Free-space optical channel characterization and experimental validation in a coastal environment // Optics Express. 2018. V. 26(6). Mar 19. P. 6614–28.https://doi.org/10.1364/OE.26.006614
10. Alnajjar S.H., Jasim Hadi M. The effect of atmospheric turbulence on the performance of end-users antenna based on WDM and hybrid amplifier // 2021 3rd International Conference on Electronics Representation and Algorithm (ICERA). 2021. P. 23–28.https://doi.org/10.1109/ICERA53111.2021.9538655
11. Grover A., Sheetal A. A cost-effective high-capacity OFDM based RoFSO transmission link incorporating hybrid SS-WDM-MDM of Hermite Gaussian modes // Optoelectronics and Advanced Materials Rapid Communications. 2020. Apr 9. 14. March–April. P. 136–45. https://oam-rc.inoe.ro/articles/a-cost-effective-high-capacity-ofdm-based-rofso-transmission-link-incorporating-hybrid-ss-wdm-mdm-of-hermite-gaussian-modes/fulltext
12. Kolev D.R., Wakamori K. Transmission analysis of OFDM-Based services over line-of-sight indoor infrared laser wireless links // J. Lightwave Technol. 2021. V. 30.P. 3727–3735. https://doi: 10.1109/JLT.2012.2227456
13. Singh M., Malhotra J. Performance comparison of M-QAM and DQPSK modulation schemes in a 2ґ20 Gbit/s–40 GHz hybrid MDM–OFDM-based radio over FSO transmission system // Photonic Network Communications. 2019. V. 38(3). Dec. P. 378–89.https://doi.org/10.1007/s11107-019-00861-z
14. Prabu K., Utsav J., Balaji Ka. Asymptotic BER analysis of QAM and PSK with OFDM RoFSO over M —turbulence in the presence of pointing errors // IET Communications. 2018. V. 12. P. 2046–2051. https://doi.org/10.1049/iet-com.2017.0560
15. Siegel T., Chen S.P. Investigations of free space optical communications under real-world atmospheric conditions // Wireless Personal Communications. 2021. V. 116(1). P. 475–90. https://doi.org/10.1007/s11277-020-07724-1
16. Gadze J.D., Akwafo R., Affum E.A. Analysis of 75 GHz millimeter wave radio over fiber-based fronthaul system for future networks // International Journal of Advanced Research in Computer and Communication Engineering. 2020. V. 9(4). P. 79–95. https://doi.org/10.17148/IJARCCE.2020.9415
17. Ninos M.P., Nistazakis H.E., Leitgeb E., Tombras G.S. Spatial diversity for QAM OFDM RoFSO links with nonzero boresight pointing errors over atmospheric turbulence channels // Journal of Modern Optics. 2018. V. 66(3). P. 241–251 https//doi.org/: 10.1080/09500340.2018.1516828
18. Kaur S., Tabassum N. // IETE Journal of Research. 2021. V. 69(4). P. 1934–1944. https://doi.org/ 10.1080/03772063.2021.1878067
19. Sharma A., Kaur S. Performance evaluation and fog attenuation modelling of FSO link for hilly regions of India // Opt. Quant. Electron.2021. V. 53. P. 697. https://doi.org/10.1007/s11082-021-03348-2
20. Sharma A., Kaur S. Performance analysis of 1280 Gbps DWDM – FSO system employing advanced modulation schemes // Optik. 2021. V. 248. P. 168135. https://doi.org/10.1016/j.ijleo.2021.168135
21. Sharma A., Kaur S., Chaudhary S., Sushank. Performance analysis of 320 Gbps DWDM—FSO System under the effect of different atmospheric conditions // Optical and Quantum Electronics. 2021. V. 53. P. 239. https://doi.org/10.1007/s11082-021-02904-0
22. Ali A. Mazin. Analysis study of rain attenuation on optical communications link // International Journal of Engineering. Business and Enterprise Applications (IJEBEA). 2013. № 6. P. 18–24.
23. Rahman A.K., Julai N. Impact of rain weather over free space optic communication transmission// Indonesian Journal of Electrical Engineering and Computer Science. 2019. V. 14. P. 303–310. https://doi.org/10.11591/ijeecs.v14.i1.pp303-310
24. Adnan S.A., Ali M.A.A., Al-Saeedi S.A. Characteristics of RF signal in free space optics (RoFSO) considering rain effect // Journal of Engineering and Applied Sciences. 2018. V. 13(7). P. 1644-8. 10.39https://doi.org/23/jeasci.2018.1644.1648
25. Basahel A.A., Islam M.R., Zabidi S.A. Availability assessment of free-space-optics links with rain data from tropical climates // Journal of Lightwave Technology. 2017. Oct 1. V. 35(19). P. 4282-8. https://doi.org/ 10.1109/JLT.2017.2732459
26. Badar N., Jha R.K., Towfeeq I. Performance analysis of an 80 (8ґ10) Gbps RZ-DPSK based WDM-FSO system under combined effects of various weather conditions and atmospheric turbulence induced fading employing Gamma–Gamma fading model // Optical and Quantum Electronics. 2018. V. 50. № 1. P. 1–11. https://doi.org/ 10.1007/s11082-017-1306-y