DOI: 10.17586/1023-5086-2023-90-09-73-81
УДК: 535
Design and simulation of a fiber sensing system for metal ion detection based on side-polished fiber and coated fiber grating
Full text on elibrary.ru
Publication in Journal of Optical Technology
Guo J.Q., Zhou Yа.F., Liu Yu, Wang C.L., Zhen W.Yu., Jiang J.L., Ji H.Y., Chen X.Yu, Li R.P. Design and simulation of a fiber sensing system for metal ion detection based on side-polished fiber and coated fiber grating (Моделирование и проектирование волоконной сенсорной системы для обнаружения ионов металлов на основе оптического волокна с боковой полировкой и волоконной решетки с покрытием) [на англ. яз.] // Оптический журнал. 2023. Т. 90. № 9. С. 82–90. http://doi.org/10.17586/1023-5086-2023-90-09-82-90
Guo J.Q., Zhou Yа.F., Liu Yu, Wang C.L., Zhen W.Yu., Jiang J.L., Ji H.Y., Chen X.Yu, Li R.P. Design and simulation of a fiber sensing system for metal ion detection based on side-polished fiber and coated fiber grating [in English] // Opticheskii Zhurnal. 2023. V. 90. № 9. P. 82–90. http://doi.org/10.17586/1023-5086-2023-90-09-82-90
Subject of study. A fluid metal ion detection device is designed to solve the issue of heavy metal water quality detection in real life, which is used by a fusion of a side-throw fiber-assisted fluid structure and a long-period fiber grating coated with a metal chelator film. The aim of the work is to design of a fiber-optic fluid system for the simultaneous qualitative and quantitative analysis of metal ions in a liquid. Method. The refractive index bands of common contaminated water sources are selected for the numerical simulation of metal ion species and concentration sensing characteristics. Main results. The results show that the interference wavelength is red-shifted with the increase of the filled fluid concentration. Its refractive index sensing sensitivity is calculated to be about 3343.33 nm/RIU. Meanwhile, when the refractive index of long-period fiber grating film layer increases from 1.2 to 1.44, the loss peak decreases by a total of 6.011 dB, and thus the ion species can be identified. Practical significance. Therefore, this sensing system offers the possibility of real-time detection of fluid ion orientation.
optofluidic system, optical fiber sensing, microstructured optical fiber, metal ion detection
Acknowledgements:the work was funded by the National Natural Science Foundation of China (61705027, 62005033, and 52175531), Chongqing Science and Technology Commission Basic Research Project (CSTC-2020jcyj-msxm0603), Chongqing Municipal Education Commission Science and Technology Research Program (KJQN202000609).
OCIS codes: 060.2370
References:1. Zhou K., Liu Z., Cong M., et al. Detection of chemical oxygen demand in water based on UV absorption spectroscopy and pso-lssvm algorithm // J. Optoelectron. Lett. 2022. V. 18. № 4. P. 0251–2056. https://doi.org/10.1007/s11801-022-1143-5
2. Lu Y., Liang X., Niyungeko C., et al. A review of the identification and detection of heavy metal ions in the environment by voltammetry // Talanta. 2018. V. 178. P. 324–338. https://doi.org/10.1016/j.talanta.2017.08.033
3. Sun C., Ou X., Cheng Y., et al. Coordination-induced structural changes of DNA-based optical and electrochemical sensors for metal ions detection // Dalton Trans. 2019. V. 48. № 18. P. 5879–5891. https://doi.org/10.1039/C8DT04733B
4. Si Y., Lao J., Zhang X., et al. Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection // J. Lightw. Technol. 2019. V. 37. № 14. P. 3495–3502. http://doi.org/10.1109/JLT.2019.2917329
5. Shakya A.K., Singh S. State of the art in fiber optics sensors for heavy metals detection // J. Opt. and Laser Technol. 2022. V. 153. P. 1879–2545. https://doi.org/10.1016/j.optlastec.2022.108246
6. Pan J.H., Cao C., Zhang A., et al. A high sensitivity localized surface plasmon resonance sensor based on D-shaped photonic crystal fiber for low refractive index detection // J. Optoelectron. Lett. 2022. V. 18. № 7. P. 425–429. https://doi.org/10.1007/s11801-022-1193-8
7. Zain H.A., Batumalay M., Rahim H.R.A., et al. Single-walled carbon nanotubes coated D-shaped fiber for aqueous ethanol detection // J. Optoelectron. Lett. 2022. V. 18. № 7. P. 430–433. https://doi.org/10.1007/s11801-022-1166-y
8. Bashan G., London Y., Diamandi H.H., et al. Distributed cladding mode fiber-optic sensor // Optica. 2020. V. 7. № 1. P. 85–92. https://doi.org/10.1364/OPTICA.377610
9. Blakley S., Liu X., Fedotov I., et al. Fiber-optic quantum thermometry with germanium-vacancy centers in diamond // ACS Photonics. 2019. V. 6. № 7. P. 1690–1693. https://doi.org/10.1021/acsphotonics.9b00206
10. Cai S., Pan H., González-Vila Á., et al. Selective detection of cadmium ions using plasmonic optical fiber gratings functionalized with bacteria // Opt. Exp. 2020. V. 28. № 13. P. 19740–19749. https://doi.org/10.1364/OE.397505
11. Kavitha B.S., Sridevi S., Makam P., et al. Highly sensitive and rapid detection of mercury in water using functionalized etched fiber Bragg grating sensors // Sensors and Actuators B: Chem. 2021. V. 333. P. 129550. https://doi.org/10.1016/j.snb.2021.129550
12. Li G., Liu Z., Feng J., et al. Pb2+ fiber optic sensor based on smart hydrogel coated Mach–Zehnder interferometer // Opt. & Laser Technol. 2022. V. 145. P. 107453. https://doi.org/10.1016/j.optlastec.2021.107453
13. He J., Bell B.A., Casas-Bedoya A., et al. Ultracompact quantum splitter of degenerate photon pairs // Optica. 2015. V. 2. № 9. P. 779–782. https://doi.org/10.1364/OPTICA.2.000779
14. Zhang D., Zhang Z., Wei H., et al. Direct laser writing spiral Sagnac waveguide for ultrahigh magnetic field sensing // Photon. Res. 2021. V. 9. № 10. P. 1984–1991. https://doi.org/10.1364/PRJ.433854
15. Zhang Z., He J., Du B., et al. Miniature optical correlator in a single-nanowire Sagnac loop // ACS Photonics. 2020. V. 7. № 11. P. 3264–3269. https://doi.org/10.1021/acsphotonics.0c01417