ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-01-14-24

УДК: 535.314

Investigation of the liquid droplet surface profile features using the laser caustic method

For Russian citation (Opticheskii Zhurnal):

Ведяшкина А.В., Расковская И.Л., Павлов И.Н. Исследование особенностей профиля поверхности капли жидкости методом каустик лазерного излучения // Оптический журнал. 2024. Т. 91. № 1. С. 14–24. http://doi.org/10.17586/1023-5086-2024-91-01-14-24

 

Vedyashkina A.V., Raskovskaya I.L., Pavlov I.N. Investigation of the liquid droplet surface profile features using the laser caustic method [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 1. P. 14–24. http://doi.org/10.17586/1023-5086-2024-91-01-14-24

For citation (Journal of Optical Technology):

Anastasia V. Vedyashkina, Irina L. Raskovskaya, and Ilya N. Pavlov, "Investigation of liquid droplet surface profile features using the laser caustic method," Journal of Optical Technology. 91(1), 7-13 (2024). https://doi.org/10.1364/JOT.91.000007

Abstract:

Subject of research. Тhe surface profile characteristic of a liquid drop lying on a transparent substrate. The research is based on the optical phenomenon of caustic formation that appears on the screen when droplet is probed by laser radiation. Purpose of the study. Justification of the possibilities of using the caustic laser radiation method to obtain additional information about the microrelief and diagnose the features of the surface profile of a liquid drop lying on a transparent substrate. Method. The employed method of laser caustic involves probing of the studied object with a beam of light and evaluating its characteristics by the geometric parameters of the caustic surfaces formed during refraction or reflection. The key distinction of the caustic method from classical optical methods lies in the ability to determine inflection points of the curve in the heterogeneity model and their locations using the geometric parameters of caustics recorded during the experiment. Main results. The study shows that by using the laser caustic method, it is possible to diagnose the properties of the liquid droplet's surface profile and acquire supplementary data regarding both macro- and micro-relief of the droplet surface when working with established optical techniques. The article presents the results of computer modeling of laser radiation refraction and caustic formation when probing liquid droplets with various surface profile shapes. The emergence of lines with sharply increasing intensity of the light field on the refraction image, which are observed in a series of experiments involving wide collimated laser beams to probe liquid droplets, is explained. Practical significance. The paper demonstrates the new possibilities of applying the laser caustic method in the study of wetting and spreading processes of droplets and films on solid surfaces, that allows to improve of existing optical research methods without the need for expensive equipment.

Keywords:

caustic method, catastrophe optics, laser refractography, liquid boundary layer, contact angle

OCIS codes: 120.5710, 260.2710, 120.4820

References:

1.    Majumder B., Katarkar A., Bhaumik S. Effect of structured surface on contact angle using sessile droplet method // Publishing Ltd IOP Conf. Ser.: Materials Sci. and Eng. 2020. V. 814. https://doi.org/10.1088/1757-899X/814/1/012034

2.   Pavlov I.N., Raskovskaya I.L., Tolkachev A.V. Structure of the surface microrelief of a droplet evaporating from a rough substrate as a possible cause of contact angle hysteresis // J. Experim. and Theor. Phys. 2017. V. 124. № 4. P. 570–579. https://doi.org/10.1134/S1063776117030141

3.   Pavlov I.N., Raskovskaya I.L., Rinkevichyus B.S. Surface-profile reconstruction of a liquid droplet based on layer-by-layer laser probing // Technical Physics Letters. 2017. V. 43. № 7. P. 600–602. https://doi.org/10.1134/s1063785017070124

4.   Chao F.D., Mcquillen J.B., Sankovic J.M., Zhang N. Catastrophe optics method to determine the micro-nano size profiles at TPL of liquid films on a solid surface // Proc. ASME 2009 2nd Micro/Nanoscale Heat and Mass Transfer Internat. Conf. 2009. P. MNHMT2009-18335. https://doi.org/10.1115/MNHMT2009-18335

5.   Kravtsov Yu.A., Orlov Yu.I. Geometric optics of inhomogeneous media [in Russian]. Moscow: ''Nauka'' Publ., 1980. 304 p.

6.   Yuana Y., Zhang Q., Sheng C., Zhanga Z. Theoretical model of caustics method for the interfacial cracks // Engineering Fracture Mechanics. 2020. V. 233. P. 107006. https://doi.org/10.1016/j.engfracmech.2020.107006

7.    Qiu P., Yue Z., Yang R., Li J.C. Effects of vertical and horizontal reflected blast stress waves on running cracks by caustics method // Engineering Fracture Mechanics. 2019. V. 212. P. 164–179. https://doi.org/10.1016/j.engfracmech.2019.03.018

8.   Rinkevichyus B.S., Evtikhieva O.A., Raskovskaya I.L. Laser refractography. N.Y.: Springer, 2010. 186 p. https://doi.org/10.1007/978-1-4419-7397-9

9.   Vedyashkina A.V., Rinkevichyus B.S., Pavlov I.N. Study of the diffusion layer of a liquid using refraction of structured laser radiation // Collection of Scientific Papers of the VI Internat. Conf. on Photonics and Information Optics. 2017. P. 217–218.

10. Vedyashkina A.V., Raskovskaya I.L., Pavlov I.N. Application of the caustic method to study heat and mass transfer processes in liquids // Collection of Scientific Papers of the Х Internat. Conf. on Photonics and Information Optics. 2021. P. 431–432.

11.  Vedyashkina A.V., Rinkevichyus B.S., Raskovskaya I.L., Pavlov I.N. Laser radiation caustics method for quantitative diagnostic of transparent inhomogeneous media // Proс. Progress in Electromagnetics Research Symp. 2017. P. 754–758. https://doi.org/10.1109/PIERS.2017.8261842

12.  Larkin S. Lasers and electro-optics research at the cutting edge. N.Y.: Nova, 2007. 293 p.

13.  Zhang N., Chao F.D. Caustics and caustic-diffraction in laser shadowgraphy of a sessile drop and identification of profile near contact line // Opt. and Laser Technol. 2003. V. 35. P. 155–161. https://doi.org/10.1016/S0030-3992(02)00161-5

14.       Šikalo Š., Wilhelm H.-D., Roisman I.V., Jakirlić S., Tropea C. Dynamic contact angle of spreading droplets: Experiments and simulations // Physics of Fluids. 2005. V. 17. P. 062103. https://doi.org/10.1063/1.1928828