ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-10-43-49

УДК: 681.7.068

Development and research of narrowband spectral filters on a cascade of fiber Bragg gratings

For Russian citation (Opticheskii Zhurnal):

Яндыбаева Ю.И., Варжель С.В., Якимук В.А., Комисаров В.А., Калязина Д.В., Дмитриев А.А., Сковородкина М.В., Куликов А.В. Разработка и исследование узкополосных спектральных фильтров на каскаде волоконных брэгговских решёток // Оптический журнал. 2024. Т. 91. № 10. С. 43–49. http://doi.org/10.17586/1023-5086-2024-91-10-43-49

 

Yandybaeva Y.I., Varzhel S.V., Yakimuk V.A., Komisarov V.A., Kaliazina D.V., Dmitriev A.A., Skovorodkina M.V., Kulikov A.V. Development and research of narrowband spectral filters on a cascade of fiber Bragg gratings [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 10. P. 43–49. http:// doi.org/10.17586/1023-5086-2024-91-10-43-49

For citation (Journal of Optical Technology):

Yandybaeva Y.I., Varzhel S.V., Yakimuk V.A., Komisarov V.A., Kaliazina D.V., Dmitriev A.A., Skovorodkina M.V., Kulikov A.V. Development and research of narrowband spectral filters on a cascade of fiber Bragg gratings [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 10. P. 43–49. http:// doi.org/10.17586/1023-5086-2024-91-10-43-49

Abstract:

Subject of study. A cascade of narrowband fiber Bragg gratings with a high attenuation connected to each other through a fiber-optic isolator. Aim of study. Fabrication of a narrowband spectral filter on a cascade of fiber Bragg gratings with a bandwidth of 82 pm. Method. The phase mask method with a scanning beam of KrF excimer laser COHERENT COMPexPro 102F radiation was used for inscribing of long fiber Bragg gratings in order to obtain a narrow bandwidth. Two gratings with the same central wavelength of the Bragg resonance were connected to each other in series through a fiber-optic isolator to avoid interference effects. Main results. According to the transmission spectra of the obtained cascade of fiber Bragg gratings, the filter transmission bandwidth at the level of –3 dB was determined as 82 pm, as well as the maximum attenuation value of 46 dB. The central wavelength of the minimum transmission of the filter was 1549.9 nm. For comparison, the bandwidth of gratings with the same length and similar attenuation value was 123 pm at the level of –3 dB, which significantly exceeds the bandwidth of the filter on the cascade of fiber Bragg gratings. Practical significance. The obtained narrowband filter on a cascade of fiber Bragg gratings is suitable for integration into the subcarrier wave quantum key distribution systems to cut off the carrier wavelength of the signal from the side ones, as well as for other communication line systems where it is necessary to select a narrow spectral band.

Keywords:

fiber Bragg gratings, narrowband spectral filters, cascade of fiber Bragg gratings, fiber-optic isolator, subcarrier wave quantum key distribution system

Acknowledgements:

the work was done by order of JSCo “Russian Railways”

OCIS codes: 060.3735, 060.2340, 060.5565

References:

1. Rashed A.N.Z., Tabbour M.S.F., El-Meadawy S. Optimum flat gain with optical amplification technique based on both gain flattening filters and fiber bragg grating methods // Journal of Nanoelectronics and Optoelectronics. 2018. V. 13. № 5. P. 665–676. https://doi.org/10.1166/jno.2018.2168
2. Dochow S., Latka I., Becker M., Spittel R., Kobelke J., Schuster K., Graf A., Brückner S., Unger S., Rothhardt M., Dietzek B., Krafft C., Popp J. Multicore fiber with integrated fiber Bragg gratings for backgroundfree Raman sensing // Optics Express. 2012. V. 20. № 18. P. 20156–20169. https://doi.org/10.1364/OE. 20.020156
3. Goncharov R., Samsonov E., Kiselev A.D. Subcarrier wave quantum key distribution system with gaussian modulation // Journal of Physics: Conference Series. 2021. V. 2103. № 1. P. 012169. http://doi.org/10.1088/1742-6596/2103/1/012169
4. Mora J., Ruiz-Alba A., Amaya W., Martínez A., GarcíaMuñoz V., Calvo D., Capmany J. Experimental demonstration of subcarrier multiplexed quantum key distribution system // Optics Letters. 2012. V. 37. № 11. P. 2031–2033. https://doi.org/10.1364/OL.37.002031
5. Gleim A.V., Nazarov Y.V., Egorov V.I., Smirnov S.V., Bannik O.I., Chistyakov V.V., Kynev S.M., Anisimov A.A., Kozlov S.A., Vasiliev V.N. Subcarrier wave quantum key distribution in telecommunication network with bitrate 800 kbit/s // EPJ Web of Conferences. 2015. V. 103. P. 10005. https://doi.org/10.1051/epjconf/201510310005
6. Walenta N., Burg A., Caselunghe D., Constantin J., Gisin N., Guinnard O., Houlmann R., Junod P., Korzh B., Kulesza N. A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing // New Journal of Physics. 2014. V. 16. № 1. P. 013047. https://doi.org/10.1088/1367-2630/16/1/013047
7. Han L., Li Y., Xu P., Tao X., Luo W., Cai W., Liao S., Peng C. Integrated Fabry–Perot filter with wideband noise suppression for satellite-based daytime quantum key distribution // Applied Optics. 2022. V. 61. № 3. P. 812–817. https://doi.org/10.1364/AO.447785
8. Rosenberg D., Nam S.W., Hiskett P.A., Peterson C.G., Hughes R.J., Nordholt J.E., Lita A.E., Miller A.J. Quantum key distribution at telecom wavelengths with noise-free detectors // Applied Physics Letters. 2006. V. 88. № 2. P. 021108. https://doi.org/10.1063/1.2164307
9. Tawfik N.I., Eldeeb W.S., El-Mashade M.B., Abdelnaiem A.E. Optimization of uniform fiber Bragg grating reflection spectra for maximum reflectivity and narrow bandwidth // Int. J. Comput. Eng. Res. 2015. V. 5. P. 53–61.
10. Toba M., Mustafa F.M., Barakat T.M. New simulation and analysis fiber Bragg grating: narrow bandwidth without side lobes // Journal of Physics Communications. 2020. V. 4. №. 7. P. 075018. https://doi.org/ 10.1088/2399-6528/ab0600
11. Fan Z., Zeng X., Cao C., Feng Z., Lai Z., Dang W. Novel structure of an ultra-narrow-bandwidth fibre laser based on cascade filters: PGFBG and SA // Optics Communications. 2016. V. 368. P. 150–154. https://doi.org/10.1016/j.optcom.2016.02.013
12. Bhaskar C.V.N., Pal S., Pattnaik P.K. Narrow-band optical band-pass filter using dual cascaded chirped FBGs // Optik. 2022. V. 262. P. 168979. https://doi. org/10.1016/j.ijleo.2022.168979
13. Singer C., Goetz A., Prasad A.S., Becker M., Rothhardt M., Skoff S.M. Thermal tuning of a fiber-integrated Fabry–Pérot cavity // Optics Express. 2021. V. 29. № 18. P. 28778–28786. https://doi.org/10.1364/OE.433094
14. Wang J. Research on dynamic grating cascaded fiber Bragg grating Fabry–Perot cavity // 2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). 2020. P. 5–8. https://doi.org/10.1109/ TOCS50858.2020.9339738
15. Lemaire P., Atkins R., Mizrahi V., Reed W. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers // Electronics Letters. 1993. V. 29. P. 1191–1193. https://doi.org/10.1049/el:19930796
16. Варжель С.В., Мунько А.С., Коннов К.А., Грибаев А.И., Куликов А.В. Запись решёток Брэгга в двулучепреломляющем оптическом волокне с эллиптической напрягающей оболочкой, подвергнутом водородной обработке // Оптический журнал. 2016. Т. 83. № 10. С. 74–78.
Varzhel S.V., Mun’ko A.S., Konnov K.A., Gribaev A.I., Kulikov A.V. Recording Bragg gratings in hydrogenated birefringent optical fiber with elliptical stress cladding // Journal of Optical Technology. 2016. V. 83. № 10. P. 638–641. https://doi.org/10.1364/JOT.83.000638