DOI: 10.17586/1023-5086-2024-91-10-50-59
УДК: 535.372, 535.354, 538.915
Spectral and kinetic properties of radiation of self-assembled Ge(Si) nanoislands in two-dimensional photonic crystals with different hole depths
Full text on elibrary.ru
Яблонский А.Н., Юрасов Д.В., Захаров В.Е., Перетокин А.В., Степихова М.В., Шалеев М.В., Шенгуров Д.В., Родякина Е.Е., Смагина Ж.В., Новиков А.В. Спектро-кинетические характеристики излучения самоформирующихся Ge(Si)-наноостровков в двумерных фотонных кристаллах с различной глубиной отверстий // Оптический журнал. 2024. Т. 91. № 10. С. 50–59. http://doi.org/10.17586/1023-5086-2024-91-10-50-59
Yablonskiy A.N., Yurasov D. V., Zakharov V E., Peretokin A.V., Stepikhova M. V., Shaleev M.V., Shengurov D. V., Rodyakina E.E., Smagina Z.V., Novikov A. V. Spectral and kinetic properties of radiation of self-assembled Ge(Si) nanoislands in two-dimensional photonic crystals with different hole depths [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 10. P. 50–59. http://doi.org/10.17586/1023-5086-2024-91-10-50-59
Subject of study. SiGe heterostructures with self-assembled Ge(Si) nanoislands embedded in two-dimensional photonic crystals. Aim of study. Determination the dependence of the spectral and temporal characteristics of the radiation of structures with Ge(Si) islands in two-dimensional photonic crystals on the depth of the holes forming the photonic crystal. Determination of the characteristic decay times of the luminescence of islands in photonic crystals and the main mechanisms that determine their dependence on the depth of etching of the holes of photonic crystals. Method. The structures under study were obtained using the methods of molecular beam epitaxy electron beam lithography and plasma-chemical etching. The study of the optical properties of the obtained structures was carried out by microphotoluminescence spectroscopy with high spectral (0.5 nm) and temporal (50 ps) resolution. Main results. The dependences of the intensity, spectral shape, and characteristic decay times of photoluminescence of self-assembled Ge(Si) islands in two-dimensional photonic crystals with a hexagonal lattice on the etching depth of the photonic crystal holes have been determined. A monotonic decrease in the characteristic decay time of the luminescence of islands in photonic crystals at room temperature with increasing hole depth from 9 ns for the initial structure without photonic crystals to 0.6 ns for the sample with holes etched to the entire depth of the grown structure (335 nm), has been observed, which is associated with an increase in nonradiative recombination of charge carriers at the boundaries of the holes. The optimal ratio of the hole depth to the thickness of the active region of the structure has been determined, which makes it possible to obtain a maximum increase in the luminescence intensity of Ge(Si) islands in two-dimensional photonic crystals compared to planar structures without photonic crystals. Practical significance. The obtained results can be important for the development of efficient light-sources of near-infrared range for silicon integrated optoelectronics.
SiGe heterostructures, Ge(Si) islands, two-dimensional photonic crystals, microphotoluminescence spectroscopy, time-resolved luminescence spectroscopy, non-radiative recombination
OCIS codes: 310.6628, 300.6470, 050.5298, 250.5230
References:1. Wang J., Long Y. On-chip silicon photonic signaling and processing: a review // Science Bulletin. 2018. V. 68. P. 1267–1310. https://doi.org/10.1016/j.scib.2018.05.038
2. Fan S., Villeneuve P.R., Joannopoulos J.D., Schubert E.F. High extraction efficiency of spontaneous emission from slabs of photonic crystals // Phys. Rev.Lett. 1997. V. 78. № 17. P. 3294–3297. https://doi.org/10.1103/PhysRevLett.78.3294
3. Boroditsky M., Vrijen R., Krauss T.F., Coccioli R., Bhat R., Yablonovitch E. Spontaneous emission extraction and Purcell enhancement from thin-film 2D photonic crystals // J. Lightwave Technol. 1999. V. 17. № 11. P. 2096–2112. https://doi.org/10.1109/50.803000
4. Rutckaia V., Heyroth F., Novikov A., Shaleev M., Petrov M., Schilling J. Quantum dot emission driven by mie resonances in silicon nanostructures // Nano Lett. 2017. V. 17. № 11. P.6886–6892. https://doi.org/10.1021/acs.nanolett.7b03248
5. Mengtao Liu, Qingchun Zhou. Absorption characteristics of one-dimensional graphene photonic crystals (Характеристики поглощения в одномерном фотонном кристалле на основе графена) [на англ.яз.] // Оптический журнал. 2021. Т. 88. № 3. С. 3–9. http://doi.org/10.17586/1023-5086-2021-88-03-03-09
Liu M., Zhou Q. Absorption characteristics of one-dimensional graphene photonic crystals // Journal of Optical Technology. 2021. V. 88. № 3. P. 116–120. https://doi.org/10.1364/JOT.88.000116
6. Saito S., Al-Attili A., Oda K., Ishikawa Y. Towards monolithic integration of germanium light sources on silicon chips // Semicond. Sci. Technol. 2016. V. 31. P. 043002. https://doi.org/10.1088/0268-1242/31/4/043002
7. Reboud V., Gassenq A., Hartmann J., Widiez J., Virot L., Aubin J., Guilloy K., Tardif S., Fedeli J., Pauc N., Chelnokov A., Calvo V. Germanium based photonic components toward a full silicon/germanium photonic platform // Progress in Crystal Growth and Characterization of Materials. 2017. V. 63. № 2.P. 1–24. https://doi.org/10.1016/j.pcrysgrow.2017.04.004
8. Vescan L., Stoica T., Chretien O., Goryll M., Mateeva E., Muck A. Size distribution and electroluminescence of selfassembled Ge dots // J. Appl. Phys. 2000. V. 87. P. 7275. https://doi.org/10.1063/1.372980
9. Krasilnik Z.F., Novikov A.V., Lobanov D.N., Kudryavtsev K.E., Antonov A.V., Obolenskiy S.V., Zakharov N.D., Werner P. SiGe nanostructures with self-assembled islands for Si-based optoelectronics // Semicond. Sci. Technol. 2011. V. 26. P. 014029. https://doi.org/10.1088/0268-1242/26/1/014029
10. David S., El Kurdi M., Boucaud P., Chelnokov A., Le Thanh V., Bouchier D., Lourtioz J.-M. Two-dimensional photonic crystals with Ge/Si self-assembled islands // Appl. Phys. Lett. 2003. V. 83. P. 2509–2511. https://doi.org/10.1063/1.1612892
11. Shiraki Y., Xu X., Xia J., Tsuboi T., Maruizumi T. Electroluminescence from microcavities of photonic crystals, microdisks and -rings including Ge dots formed on SOI substrates // ECS Transactions. 2012. V. 45. № 5. P. 235–246. https://doi.org/10.1149/1.3700432
12. Schatzl M., Hackl F., Glaser M., Rauter P., Brehm M., Spindlberger L., Simbula A., Galli M., Fromherz T., Schäffler., F. Enhanced telecom emission from single group-IV quantum dots by precise CMOS-compatible positioning in photonic crystal cavities // ACS Photon. 2017. V. 4. P. 665–673. https://doi.org/10.1021/acsphotonics.6b01045
13. Jannesari R., Schatzl M., Hackl, F., Glaser M., Hingerl K., Fromherz T., Schäffler F. Commensurate germanium light emitters in silicon-on-insulator photonic crystal slabs // Optics Express. 2014. V. 22. № 21. P. 25426. https://doi.org/10.1364/OE.22.025426
14. Dyakov S.A., Stepikhova M.V., Bogdanov A.A., Novikov A.V., Yurasov D.V., Shaleev M.V., Krasilnik Z.F., Tikhodeev S.G., Gippius N.A. Photonic bound states in the continuum in Si structures with the self-assembled Ge nanoislands // Laser Photonics Rev. 2021. V. 15. P. 2000242. https://doi.org/10.1002/lpor.202000242
15. Purcell E.M. Spontaneous emission probabilities at radio frequencies // Phys. Rev. 1946. V. 69. P. 681. https://doi.org/10.1103/PhysRev.69.674.2
16. Joannopoulos J., Johnson S.G., Meade R., Winn J. Photonic crystals: molding the flow of light. 2nd ed. N.J: Princeton University Press, 2007. 286 p.
17. Юрасов Д.В., Яблонский А.Н., Шалеев М.В., Шенгуров Д.В., Родякина Е.Е., Смагина Ж.В., Вербус В.А., Новиков А.В. Люминесцентный отклик фотонных кристаллов со встроенными Ge наноостровками с различной глубиной травления отверстий // Письма в ЖТФ. 2023. Т. 49. № 10. С. 29–32. https://doi.org/10.21883/PJTF.2023.10.55431.19511
Yurasov D.V., Yablonskiy A.N., Shaleev M.V., Shengurov D.V., Rodyakina E.E., Smagina Zh.V., Verbus V.A., Novikov A.V. Luminescent response of photonic crystals with embedded Ge nanoislands with different hole etching depths // Technical Physics Letters. 2023. V. 49. № 5. P. 68–72. http://dx.doi.org/10.21883/TPL.2023.05.56033.19511
18. Яблонский А.Н., Юрасов Д.В., Захаров В.Е., Перетокин А.В., Степихова М.В., Шалеев М.В., Шенгуров Д.В., Родякина Е.Е., Смагина Ж.В., Дьяков С.А., Новиков А.В. Влияние условий оптического возбуждения на спектральные и временные характеристики излучения двумерных фотонных кристаллов с Ge(Si) наноостровками // Физика и техника полупроводников. 2023. Т. 57. № 4. С. 251–258. https://doi.org/10.21883/FTP.2023.04.55894.08k
Yablonskiy A.N., Yurasov D.V., Zakharov V.E., Peretokin A.V., Stepikhova M.V., Shaleev M.V., Shengurov D.V., Rodyakina E.E., Smagina Zh.V., Dyakov S.A., Novikov A.V. Effect of optical excitation conditions on the spectral and temporal characteristics of the radiation from two-dimensional photonic crystals with Ge(Si) nanoislands // Semiconductors. 2023. V. 57. № 4. P. 248–255. https://doi.org/10.61011/SC. 2023.04.56421.08k