ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-11-43-53

УДК: 535.8

Hartmannometer and Fizeau interferometer: Comparative analysis of the devices for optical surface test

For Russian citation (Opticheskii Zhurnal):

Галактионов И.В., Никитин А.Н., Шелдакова Ю.В., Топоровский В.В., Абдулразак С.Х., Кудряшов А.В. Гартманометр и интерферометр Физо: сравнительный анализ устройств в задачах контроля качества оптических поверхностей // Оптический журнал. 2024. Т. 91. № 11. С. 43–53. http://doi.org/10.17586/1023-5086-2024-91-11-43-53

 

Galaktionov I.V., Nikitin A.N., Sheldakova J.V., Toporovsky V.V., Abdulrazak S.Kh., Kudryashov A.V. Hartmannometer and Fizeau interferometer: Comparative analysis of the devices for optical surface test [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 11. P. 43–53. http://doi. org/10.17586/1023-5086-2024-91-11-43-53

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Opto-mechanical device as an alternative to the Fizeau interferometer for optical quality test. Aim of study. Development and research of the metrological device for measurement of the optical surface flatness. Comparison of the results to ones obtained by the Fizeau interferometer. Method. Measurements of wavefront of a radiation reflected from the optical surface under test by means of Shack–Hartmann wavefront sensor. Main results. As a result of the research, a new optical metrological device called a Hartmanometer was developed. A method for its calibration is presented, and a comparison of the results of measuring a test optical surface using the developed device and a classic Fizeau interferometer is given. The total amplitude of wave front distortions measured using a Fizeau interferometer was 0.127 μm (standard deviation 0.022 μm), using a hartmanometer — 0.131 μm (standard deviation 0.024 μm). Practical significance. The newly developed device can serve as a robust alternative to the conventional Fizeau interferometer in the tasks of optical surface testing.

Keywords:

Hartmannometer, Fizeau interferometer, Shack–Hartmann wavefront sensor, wavefront sensing, interferometry

OCIS codes: 120.2650, 120.3930, 120.5050

References:

1. Hariharan P., Sen D. The double-passed Fizeau interferometer // JOSA. 1960. V. 50. P. 999–1001. https://doi.org/10.1364/JOSA.50.000999
2. Lyon R., Carpenter K., Huet H., et.al. Building the Fizeau interferometer testbed // IEEE Aerospace Conf. Proc. 2004. Big Sky, USA. March 6–13, 2004. P. 2201–2210. https://doi.org/10.1109/AERO.2004.1368013
2. Smythe R. Practical aspects of modern interferometry for optical manufacturing quality control: Part 2 // Adv. Opt. Techn. 2012. V. 1. P. 203–212. https://doi.org/10.1515/aot-2012-0026
3. Самаркин В.В., Александров А.Г., Галактионов И.В. и др. Широкоапертурная адаптивная оптическая система для коррекции искажений волнового фронта излучения петаваттного Ti:сапфирового лазера // Квант. электрон. 2022. Т. 52. № 2. С. 187–194. https://doi.org/10.1070/QEL17989
 Samarkin V., Alexandrov A., Galaktionov I., et al. Large-aperture adaptive optical system for correcting wavefront distortions of a petawatt Ti:sapphire laser beam // Quant. Electron. 2022. V. 52. № 2. P. 187–194. https://doi.org/10.1070/QEL17989
3. Yagnyatinskiy D.A., Fedoseyev V.N. Modal control of a deformable mirror via the focal spot using actuator influence functions // Internat. Conf. Laser Optics 2018. St. Petersburg, Russia. June 4–8, 2018. P. 8435877. https://doi.org/10.1109/LO.2018.8435877
4. Platt B., Shack R.J. History and principles of Shack–Hartmann wavefront sensing // Refr. Surg. 2001. V. 17. № 15. P. 2. https://doi.org/10.3928/1081-597X-20010901-13
5. Liang J., Grimm B., Goelz S., et al. Objective measurement of the wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor // JOSA. A. 1994. V. 11. P. 1949. https://doi.org/10.1364/josaa.11.001949
6. Lane R.G. Wave-front reconstruction using a Shack–Hartmann sensor // Appl. Opt. 1992. V. 31. P. 6902. https://doi.org/10.1364/AO.31.006902
7. Primot J. Theoretical description of Shack–Hartmann wave-front sensor // Opt. Commun. 2003. V. 222. P. 81–92. https://doi.org/10.1016/S0030-4018(03)01565-7
8. Konnik M., Doná J. Waffle mode mitigation in adaptive optics systems: A constrained receding horizon control approach // American Control Conf. Washington, DC, USA. June 17–19, 2013. P. 3390–3396. https:// doi.org/10.1109/ACC.2013.6580355
9. Mauch S., Reger J. Real-time spot detection and ordering for a Shack–Hartmann wavefront sensor with a low-cost FPGA // IEEE Trans. Instrum. Meas. Montevideo, Uruguay. June 12–15, 2014. V. 63. P. 2379–2386. https://doi.org/10.1109/TIM.2014.2310616
10. Dai Y., Li F., Cheng X., et. al. Analysis on Shack–Hartmann wave-front sensor with Fourier optics // Opt. & Laser Technol. 2007. V. 39. № 7. P. 1374–1379. https://doi.org/10.1016/j.optlastec.2006.10.014
11. Tallon M., Thiebaut E., Langlois M., et.al. The wavefront sensing making-of for THEMIS solar telescope // Adaptive Optics for Extremely Large Telescopes. 2021. V. 6. P. 1–7. https://doi.org/10.48550/arXiv.2101.02892
12. Zhou P., Burge J. Limits for interferometer calibration using the random ball test // SPIE. San Francisco, USA. January 25–31, 2009. V. 7426. P. 74260U. https:// doi.org/10.1117/12.828503
13. Galaktionov I., Sheldakova J., Nikitin A., et al. A hybrid model for analysis of laser beam distortions using Monte Carlo and Shack–Hartmann techniques: Numerical study and experimental results // Algorithms. 2023. V. 16. № 7. P. 337. https://doi.org/10.3390/a16070337
14. Galaktionov I., Nikitin A., Sheldakova J., et al. B-spline approximation of a wavefront measured byShack–Hartmann sensor // SPIE. San Diego, USA. August 1–5, 2021. V. 11818. P. 118180N. https://doi.org/10.1117/12.2598249
15. Malacara-Hernandez D. Wavefront fitting with discrete orthogonal polynomials in a unit radius circle // Opt. Eng. 1990. V. 29. № 6. P. 672–675.
16. Wyant J.C., Creath K. Basic wavefront aberration theory for optical metrology / Proc. Appl. Opt. and Opt. Eng.: Academic Press, Inc., 1992. P. 27–39.
17. Li J., Li W., Huang R. An efficient method for solving a matrix least squares problem over a matrix inequality constraint // Computational Optimization and Applications. 2016. V. 63. № 2. P. 393–423. https://doi.org/10.1007/s10589-015-9783-z
18. Рукосуев А.Л. Коррекция фазовых искажений излучения тераваттных фемтосекундных лазеров методами адаптивной оптики // Дисс. канд. физ.-мат. наук. М.: Московский государственный открытый университет, 2006. 153 с.
 Rukosuev A.L. Correction of phase distortions of laser terawatt femtosecond radiation by means of adaptive optics [in Russian] // PhD (Physics and Mathematics) Thesis. Moscow: Moscow Open State University, 2006. 153 p.
19. Nikitin A., Galaktionov I., Sheldakova J., et al. Absolute calibration of a Shack–Hartmann wavefront sensor for measurements of wavefronts // SPIE Photonics West. San Francisco, USA. February 3–7, 2019. V. 10925. P. 109250K. https://doi.org/10.1117/12.2510047