DOI: 10.17586/1023-5086-2024-91-11-63-70
УДК: 535.14
The applicability of quantum key distribut ion technology in a free atmosphere when constructing segments of modern quantum communication networks
Ерохин К.Ю., Казанцев С.Ю., Казиева Т.В., Миронов Ю.Б., Пчелкина Н.В. Применимость технологии квантового распределения ключей в свободной атмосфере при построении сегментов современных квантовых коммуникационных сетей // Оптический журнал. 2024. Т. 91. № 11. С. 63–70. http://doi.org/10.17586/1023-5086-2024-91-11-63-70
Erokhin K.Yu., Kazantsev S.Yu., Kazieva T.V., Mironov Yu.B., Pchelkina N.V. The applicability of quantum key distribution technology in a free atmosphere when constructing segments of modern quantum communication networks [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 11. P. 63–70. http://doi.org/10.17586/1023-5086-2024-91-11-63-70
Subject of study. Quantum key distribution technology in the free atmosphere. Aim of study. Creation of a hardware and software complex for studying the quantum key distribution technology in wireless communication systems based on serial modules, including optical units of atmospheric optical communication and a training installation for studying quantum key distribution in fiberoptic communication lines. Method. Experimental studies of the quantum communication channel characteristics in the free atmosphere formed by quantum key distribution units of the EMQOS 1.0 scientific and educational complex, coupled with optical units of atmospheric optical communication, and modernization of these systems in order to minimize losses in the quantum channel. Main results. A hardware and software complex has been created, which demonstrated the transmission of a quantum key in a free atmosphere at a distance of 180 m, while the quantum error level does not exceed 6%. It is shown that this complex allows us to study the influence of weather conditions on optical losses in a quantum communication channel and the rate of generation of a quantum key. Practical significance. The created hardware and software complex allows monitoring the parameters of both classical and quantum communication channels implemented in a free atmosphere under different weather conditions, and the modular structure of the complex makes it possible to connect other quantum equipment to conduct comparative tests of the quantum communication systems efficiency under real atmospheric route conditions.
quantum communications, atmospheric optical communication lines, free space optical communication, quantum key distribution
Acknowledgements:this work was supported by the agreement between JSC Russian Railways and PJSC Rostelecom dated October 31, 2022 № DK TsKK-226719
OCIS codes: 060.2605, 270.5565
References:1. Martin V., Brito J.P., Escribano G., et al. Quantum technologies in the telecommunications industry // EPJ Quantum Technol. 2021. V. 8. № 1. P. 19. https:// doi.org/10.1140/epjqt/s40507-021-00108-9
2. Scheidsteger T., Haunschild R., Bornmann L., et al. Bibliometric analysis in the field of quantum technology // Quantum Rep. 2021. V. 3. P. 549–575. https:// doi.org/10.3390/quantum3030036
3. Fedorov A.K., Akimov A.V., Biamonte J.D., et al. Quantum technologies in Russia // Quantum Sci. Technol. 2019. V. 4. P. 040501. https://doi.org/10.1088/2058-9565/ab4472
4. ZhiFeng Deng, HuiCun Yu, Jie Tang, et al. Air-to-air quantum key distribution with boundary layer effects // Results in Phys. 2023. V. 54. P. 107020. https://doi. org/10.1016/j.rinp.2023.107020
5. Ghalaii M., Pirandola S. Quantum communications in a moderate-to-strong turbulent space // Commun. Phys. 2022. V. 5. P. 38. https://doi.org/10.1038/s42005-022-00814-5
6. Hosseinidehaj N., Walk N., Ralph T.C. Composable finite-size effects in free-space continuous-variable quantum-key-distribution systems // Phys. Rev. A. 2021. V. 103. P. 012605. https://doi.org/10.1103/PhysRevA.103.012605
7. Jahid A., Alsharif M.H., Hall T.J. A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction // J. Network and Computer Applications. 2022. V. 200. P. 103311. https://doi.org/10.1016/ j.jnca.2021.103311
8. Sidhu J.S., Joshi S.K., Gündoğan M., et. al. Advances in space quantum communications // IET Quantum Commun. 2021. V. 2. № 4. P. 182–217. https://doi.org/10.1049/qtc2.12015
9. De Grossi F., Alberico S., Circi C. Orbit design of satellite quantum key distribution constellations in different ground stations networks // Advances in Space Res. 2024. V. 73. № 11. P. 5446–5463. https://doi.org/10.1016/j.asr.2023.01.056
10. Боев А.А., Воробьев С.С., Казанцев С.Ю. и др. Возможность построения модульной системы квантового распределения ключей в атмосфере // Письма в ЖТФ. 2022. Т. 48. № 15. С. 15–18. https://doi.org/10.21883/PJTF.2022.15.53125.19192
Boev A.A., Vorobey S.S., Kazantsev S.Y., et al. Possibility of creating a modular system for quantum key distribution in the atmosphere // Tech. Phys. Lett. 2022. V. 48. № 8. P. 11–14. https://doi.org/10.21883/TPL.2022.08.55051.19192
11. Bolotov D.V., Kuzmin M.S., Nasaraia A.P., et al. A method for estimating losses in a quantum channel for implementing quantum key distribution technology for atmospheric laser communication terminals // 2022 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). V. 5. № 1. P. 57–61. https://doi.org/10.1109/ WECONF55058.2022.9803408
12. Электронный ресурс URL: http://www.moctkom.ru/ optical-ground-stations/ (АО «Мостком»/Стационарные терминалы).
Electronic resource URL: http://www.moctkom.ru/ optical-ground-stations/ (JSC “Mostcom”/Stationary terminals).
13. Bolotov D.V., Kazantsev S.Y., Pchelkina N.V., et al. Modular facility of quantum key distribution in a free space // Wave Electronics and Its Application in Information and Telecommunication Systems. 2023. V. 6. № 1. P. 50–54. https://doi.org/10.1109/ WECONF57201.2023.10148017
14. Rabenandrasana J., Kazantsev S.Y., Pchelkina N.V., et al. Wavefront control of wide aperture laser beams for quantum key distribution problems in free space // 2023 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). St. Petersburg, Russian Federation, 2023. P. 1–8. https:// doi.org/10.1109/WECONF57201.2023.10147981
15. Rodimin V., Ponomarev M., Kazieva T., et al. Modular platform for photonic optical experiments and quantum cryptography // 2019 Internat. Siberian Conf. Control and Communications (SIBCON). Tomsk, Russia, 2019. P. 1–3. https://doi.org/10.1109/SIBCON.2019. 8729637
16. Rodimin V.E., Kiktenko E.O., Usova V.V., et al. Modular quantum key distribution setup for research and development applications // J. Russ. Laser Res. 2019. V. 40. P. 221–229. https://doi.org/10.1007/s10946-019-09793-5
17. Rabenandrasana J., Bachus A.V., Kazieva T.V., et al. Development of a metrological system for measuring the characteristics of single photon detectors based on an educational platform EMQOS 1.0 // 2023 Systems of Signals Generating and Processing in the Field of on Board Communications. Moscow, Russian Federation, 2023. P. 1–4. https://doi.org/10.1109/ IEEECONF56737.2023.10092001
18. Рабенандрасана Ж., Казиева Т.В., Трофимов Н.С. и др. Метрологическая система для измерения характеристик детектора одиночных фотонов // Системы синхронизации, формирования и обработки сигналов. 2023. Т. 14. № 3. С. 41–47.
Rabenandrasana J., Kazieva T.V., Trofimov N.S., et al. Metrological system for measuring a single photon detector [in Russian] // Systems of Synchronization, Signal Generation and Processing. 2023. V. 14. № 3. P. 41–47.