DOI: 10.17586/1023-5086-2024-91-11-91-99
УДК: 543.424
Preparation and optical properties of gold-polymer hybrids for bioimaging by surface-enhanced Raman scattering
Свинко В.О., Соловьева Е.В. Получение и оптические свойства золото-полимерных гибридов для биовизуализации методом гигантского комбинационного рассеяния света // Оптический журнал. 2024. Т. 91. № 11. С. 91–99. http://doi.org/10.17586/1023-5086-2024-91-11-91-99
Svinko V.O., Solovyeva E.V. Preparation and optical properties of gold-polymer hybrids for bioimaging by surface-enhanced Raman scattering [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 11. P. 91–99. http://doi.org/10.17586/1023-5086-2024-91-11-91-99
Subject of study. Hybrid structures based on gold nanoparticles, polymer shell and molecular dye. Aim of study. The study of influence of preparative factors on the optical properties and stability of organic-inorganic hybrids, as well as the testing of resulting three-component systems for bioimaging by surface-enhanced Raman scattering. Method. Gold nanorods were obtained by seed-mediated technique and coated by a multilayer polymer shell with cyanine 5.5 dye covalently conjugated to its surface. Morphology of the nanoparticles was confirmed using transmission electron microscopy and the dispersions stability was assessed by electrophoretic light scattering. The optical properties of hybrid nanostructures were studied by surface-enhanced Raman scattering. Main results. It was found that core-shell structures with a covalently conjugated dye have a more intense spectral response compared to hybrids in which the dye is immobilized by nonspecific sorption. The prepared plasmonic tags are appropriate for contrast cell imaging. Practical significance. The prepared tags based on gold-polymer hybrids have potential for use as optical contrasts in medical diagnostics and photothermal therapy.
tags, gold nanoparticles, surface-enhanced Raman scattering, bioimaging, covalent conjugation
Acknowledgements:this work was supported by Saint-Petersburg State University, project № 122040800256-8. The study was carried out using the equipment of the Interdisciplinary Resource Centre for Nanotechnology, the Centre for Optical and Laser Materials Research, the Centre for Physical Methods of Surface Investigation.
OCIS codes: 170.5660, 160.4236, 170.3880
References:1. Liu H., Gao X., Xu C., et al. SERS tags for biomedical detection and bioimaging // Theranostics. 2022. V. 12. № 4. P. 1870–1903. https://doi.org/10.7150/thno.66859
2. Khlebtsov B., Burov A., Pylaev T., et al. Improving SERS bioimaging of subcutaneous phantom in vivo with optical clearing // J. Biophotonics. 2022. V. 15. https://doi.org/10.1002/jbio.202100281
3. Lin L., Bi X., Gu Y., et al. Surface-enhanced Raman scattering nanotags for bioimaging // J. Appl. Phys. 2021. V. 129. № 19. Р. 191101. https://doi.org/10.1063/ 5.0047578
4. Sharma B., Frontiera R., Henry A., et al. SERS: Materials, applications, and the future // Materials Today. 2012. V. 15. № 1–2. P. 16–25. https://doi.org/10.1016/S1369-7021(12)70017-2
5. Liu J., Zheng T., Tian Y. Functionalized h-BN nanosheets as a theranostic platform for SERS real-time monitoring of microRNA and photodynamic therapy // Angewandte Chem. Intern. Ed. 2019. V. 58. № 23. P. 7757–7761. https://doi.org/10.1002/anie.201902776
6. Guselnikova O., Lim H., Kim H., et al. New trends in nanoarchitectured SERS substrates: Nanospaces, 2D materials, and organic heterostructures // Small. 2022. V. 18. № 25. Р. 2107182. https://doi.org/10.1002/smll.202107182
7. Кулагина А.С., Шугабаев Т., Евстропьев С.К. и др. Особенности синтеза наночастиц серебра и взаимодействия с дибутилфталатом в водных растворах для сенсорных применений // Оптический журнал. 2023. Т. 90. № 10. С. 116–128. http://doi.org/10.17586/1023-5086-2023-90-10-116-128
Kulagina A.S., Shugabaev T., Evstropiev S.K., et al. Features of silver nanoparticle synthesis and interaction with dibutyl phthalate in aqueous solutions for sensor applications // J. Opt. Technol. 2023. V. 90. № 10. P. 630–636. https://doi.org/10.1364/JOT.90.000630
8. Jia Y.-P., Ma B., Wei X., et al. The in vitro and in vivo toxicity of gold nanoparticles // Chinese Chem. Lett. 2017. V. 28. № 4. P. 691–702. https://doi.org/10.1016/j.cclet.2017.01.021
9. Sani A., Cao C., Cui D. Toxicity of gold nanoparticles (AuNPs): A review // Biochem. Biophys. Rep. 2021. V. 26. P. 100991. https://doi.org/10.1016/j.bbrep.2021.100991
10. Muddineti O.S., Ghosh B., Biswas S. Current trends in using polymer coated gold nanoparticles for cancer therapy // Int. J. Pharm. 2015. V. 484. № 1–2. P. 252–267. https://doi.org/10.1016/j.ijpharm.2015.02.038
11. Князев К.И., Якуненков Р.Е., Зулина Н.А. и др. Усиление поглощения и флуоресценции родамина Б в ближнем поле золотых наночастиц в полимерной матрице на основе акрилатов // Оптический журнал. 2019. Т. 86. № 1. С. 27–31. http://doi.org/10.17586/1023-5086-2019-86-01-27-31
Kniazev K.I., Yakunenkov R.E., Zulina N.A., et al. Rhodamine-B absorption and fluorescence enhancement in the near field of gold nanoparticles in an acrylatebased polymer matrix // J. Opt. Technol. 2019. V. 86. № 1. P. 21–24. https://doi.org/10.1364/JOT.86.000021
12. Rodriguez R., Bekas D., Flórez S., et al. Development of self-contained microcapsules for optimised catalyst position in self-healing materials // Polymer (Guildf). 2020. V. 187. P. 122084. https://doi.org/10.1016/j.polymer.2019.122084
13. Patlolla P., Desai N., Gupta S., et al. Interaction of a dimeric carbocyanine dye aggregate with bovine serum albumin in non-aggregated and aggregated forms // Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2019. V. 209. P. 256–263. https://doi.org/10.1016/j.saa.2018.10.048
14. Kang J., Kaczmarek O., Liebscher J., et al. Prevention of H-aggregates formation in Cy5 labeled macromolecules // Int. J. Polym. Sci. 2010. V. 2010. P. 1–7. https://doi.org/10.1155/2010/264781
15. Yoshida A., Uchida N., Kometani N. Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers // Langmuir. 2009. V. 25. № 19. P. 11802–11807. https://doi.org/10.1021/la901431r
16. Svinko V., Smirnov A., Shevchuk A., et al. Comparative study of fluorescence core-shell nanotags with different morphology of gold core // Colloids Surf. B. Biointerfaces. 2023. V. 226. P. 113306. https://doi.org/10.1016/j.colsurfb.2023.113306
17. Rosli N.S., Abdul Rahman A., Aziz A.A. Elucidating the dependence of size and concentration of gold nanoparticles in cellular uptake // Mat. Sci. Forum. 2013. V. 756. P. 205–211. https://doi.org/10.4028/www.scientific.net/MSF.756.205
18. Oh E., Delehanty J., Sapsford K., et al. Cellular uptake and fate of pegylated gold nanoparticles is dependent on both cell-penetration peptides and particle size // ACS Nano. 2011. V. 5. № 8. P. 6434–6448. https://doi.org/10.1021/nn201624c
19. Smirnov A., Aslanov S., Danilov D., et al. One-pot synthesis of silica-coated gold nanostructures loaded with cyanine 5.5 for cell imaging by SERS spectroscopy // Nanomaterials. 2023. V. 13. № 7. P. 1267. https://doi.org/10.3390/nano13071267