DOI: 10.17586/1023-5086-2024-91-02-40-49
УДК: 621.315.592.3
Zn doping of InAlAs and InP epitaxial layers from a planar Zn3P2 source
Full text on elibrary.ru
Publication in Journal of Optical Technology
Петрушков М.О., Аксенов М.С., Богомолов Д.Б., Емельянов Е.А., Протасов Д.Ю., Путято М.А., Чистохин И.Б., Преображенский В.В., Гилинский А.М., Воропаев К.О. Легирование Zn эпитаксиальных слоёв InAlAs и InP из планарного источника Zn3P2 // Оптический журнал. 2024. Т. 91. № 2. С. 40–49. http://doi.org/10.17586/1023-5086-2024-91-02-40-49
Petrushkov M.О., Aksenov M.S., Bogomolov D.B., Emelyanov E.A., Protasov D.Y., Putyato M.A., Chistokhin I.B., Preobrazhenskii V.V., Gilinsky A.M., Voropaev K.O. Zn doping of InAlAs and InP epitaxial layers from a planar Zn3P2 source [In Russian] // Opticheskii Zhurnal. 2024. V. 91. № 2. P. 40–49. http://doi.org/10.17586/1023-5086-2024-91-02-40-49
Mikhail O. Petrushkov, Maxim S. Aksenov, Dmitry B. Bogomolov, Eugeniy A. Emelyanov, Dmitry Y. Protasov, Mikhail A. Putyato, Igor B. Chistokhin, Valerii V. Preobrazhenskii, Alexander M. Gilinsky, and Kirill O. Voropaev, "Zn doping of InAlAs and InP epitaxial layers from a planar Zn3P2 source," Journal of Optical Technology. 91(2), 86-90 (2024). https://doi.org/10.1364/JOT.91.000086
The subject of study is epitaxial layers of InAlAs and InP after Zn diffusion. The aim of study is the development of method of the controlled Zn doping of InAlAs and InP epitaxial layers. Method. The doping was carried out through a narrow gap using a solid-state source based on Zn3P2 and rapid thermal annealing. The depth profiles of Zn concentration distribution in InAlAs and InP were determined using electrochemical C-V profiling. Also the dopant diffusion depth was determined by scanning electron microscopy image analysis. Main results. It has been established that at T = 500 °C the time dependence of the Zn doping depth in InP and InAlAs layers is in good agreement with the diffusion (square root) dependence. Moreover, from the calculations obtained it follows that the effective diffusion coefficient in InP is 2.5 times higher than in InAlAs. The maximum achievable concentrations of electrically active dopant in the InP and InAlAs layers are (6–7)х1017 cm–3 and (3–4)х1018 cm–3, respectively. It has been shown that the presence of a thin (100 nm) InAlAs layer in the InP epitaxial layer can significantly slow down the diffusion of Zn. Practical significance. The results on the diffusion of Zn in InAlAs and InP obtained in this work will serve as the basis for the development and manufacture of prototypes of planar avalanche photodiode devices with reduced excess noise and a wide dynamic range of sensitivity.
Zn, diffusion, InAlAs, InP, avalanche photodiode
Acknowledgements:OCIS codes: 250.1345, 040.1345
References:1. Acerbi F., Tosi A., Zappa F. Growths and diffusions for InGaAs/InP single-photon avalanche diodes // Sens. Actuator A Phys. 2013. V. 201. P. 207–213. https://doi.org/10.1016/j.sna.2013.07.009
2. Yun I., Hyun K. Zinc diffusion process investigation of InP-based test structures for high-speed avalanche photodiode fabrication // Microelectronics J. 2000. V. 31. P. 635–639. https://doi.org/10.1016/S0026-2692(00)00066-5
3. Preobrazhenskii V.V., Chistokhin I.B., Putyato M.A. at al. Single photon detectors based on InP/InGaAs/InP avalanche photodiodes // Optoelectron. Instrum. Data Process. 2021. V. 57. P. 485–493. https://doi.org/10.3103/S8756699021050125
4. Wada M., Sakakibara K., Higuchi M., Sekiguchi Y. Investigation of Zn diffusion in InP using dimethyizinc as Zn source // J. Cryst. Growth. 1991. V. 114. P. 321–326. https://doi.org/10.1016/0022-0248(91)90048-A
5. Vanhollebeke K., D’hondt M., Moerman I. at al. Zn doping of InP, InAsP/InP, and InAsP/InGaAs heterostructures through metalorganic vapor phase diffusion (MOVPD) // J. Electron. Mater. 2001. V. 30. P. 951–959. https://doi.org/10.1007/BF02657716
6. Wisser J., Glade M., Schmidt H.J., Heime K. Zinc diffusion in InP using diethylzinc and phosphine // J. Appl. Phys. 1992. V. 71. P. 3234–3237. https://doi.org/10.1063/1.350969
7. Andryushkin V.V., Gladyshev A.G., Babichev A.V. at al. Zn diffusion technology for InP-InGaAs avalanche photodiodes // J. Phys. Conf. Ser. 2021. V. 2103. P. 012184. https://doi.org/10.1088/1742-6596/2103/1/012184
8. Petrushkov M.O., Putyato M.A., Chistokhin I.B. at al. Zinc diffusion into InP via a narrow gap from a planar Zn3P2-based source // Tech. Phy. Lett. 2018. V. 44. P. 612–614. https://doi.org/10.1134/S1063785018070258
9. Kim M.D., Baek J.M., Woo Y.D. Double floating guard-ring-type InP/InGaAs avalanche photodiodes with low-resistance ohmic contacts // J. Korean Phys. Soc. 2007. V. 50. P. 1925–1928. https://doi.org/10.3938/jkps.50.1925
10. May-Arrioja D.A., LiKamWa P., Shubin I. at al. Integration of InP-based photonic devices by zinc in-diffusion // Proc. SPIE 6422. Sixth Symposium Optics in Industry. 64221S (19 May 2007). https://doi.org/10.1117/12.742558
11. David J.P., Tan C.H. Material considerations for avalanche photodiodes // IEEE J. Selected Top. Quant. Electron. 2008. V. 14. P. 998–1009. https://doi.org/10.1109/JSTQE.2008.918313
12. Tan L., Ong D., Ng J. at al. Temperature dependence of avalanche breakdown in InP and InAlAs // IEEE J. Quant. Electron. 2010. V. 46. P. 1153–1157. https://doi.org/10.1109/JQE.2010.2044370
13. Liu J., Ho W., Chen J. at al. The fabrication and characterization of InAlAs/InGaAs APDs based on a mesa-structure with polyimide passivation // Sensors. 2019. V. 19. P. 3399. https://doi.org/10.3390/s19153399
14. Sim J., Kim K., Song M. at al Optimization of charge and multiplication layers of 20-Gbps InGaAs/InAlAs avalanche photodiode // ETRI Journal. 2020. V. 44. P. 169. https://doi.org/10.4218/etrij.2020-0427
15. Zhang J., Wang H., Zhang G. at al. High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection // Opt. Lett. 2021. V. 46. P. 2670–2673. https://doi.org/10.1364/ol.424606
16. Yang S., Yoo J. Characteristics of Zn diffusion in planar and patterned InP substrate using Zn3P2 film and rapid thermal annealing process // Surf. Coat. Technol. 2000. V. 131. P. 66–69. https://doi.org/10.1016/S0257-8972(00)00761-1
17. Gurp G. J., Dongen T., Fontijn G.M. at al. Interstitial and substitutional Zn in InP and InGaAsP // J. Appl. Phys. 1989. V. 65. P. 553–560. https://doi.org/10.1063/1.343140
18. Andrievskii V.F., Gushchinskaya E.V., Malyshev S.A. Diffusion of zinc into InP with an unprotected surface // Semiconductors. 2004. V. 38. P. 68–71.