DOI: 10.17586/1023-5086-2024-91-03-79-94
УДК: 535.42, 778.38
Distortions of the virtual image in augmented reality displays based on waveguide holograms: The arising of tangential distortion and magnification chromatism
Full text on elibrary.ru
Publication in Journal of Optical Technology
Путилин Н.А., Дубынин С.Е., Путилин А.Н., Копёнкин С.С., Бородин Ю.П. Искажения виртуального изображения в схемах дисплеев дополненной реальности на волноводных голограммах: возникновение тангенциальной дисторсии и хроматизма увеличения // Оптический журнал. 2024. Т. 91. № 3. С. 79–94. http://doi.org/10.17586/1023-5086-2024-91-03-79-94
Putilin N.A., Dubynin S.E., Putilin A.N., Kopenkin S.S., Borodin Yu.P. Distortions of the virtual image in augmented reality displays based on waveguide holograms: the arising of tangential distortion and magnification chromatism [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 3. P. 79–94. http://doi.org/10.17586/1023-5086-2024-91-03-79-94
Nikolay A. Putilin, Sergey E. Dubynin, Andrey N. Putilin, Sergey S. Kopenkin, and Yuriy P. Borodin, "Distortions of the virtual image in augmented reality displays based on waveguide holograms: the arising of tangential distortion and magnification chromatism," Journal of Optical Technology. 91(3),181-190 (2024). https://doi.org/10.1364/JOT.91.000181
Subject of study. Waveguide holographic periscopes and virtual image distortions arising in augmented reality display circuits. Aim of study. Determination of the main sources of distortion in the virtual image formed by a waveguide holographic periscopic displays. Study of identified specific types of distortions. Method. At the first step, we used mathematical modeling for analyzing the influence of various errors arising in the process of manufacturing of waveguide holographic periscopes. The simulation was carried out in the geometric optics approximation with application of the vector diagrams method. We created a program for simulating a virtual image forming in head mounted of the display circuits based on waveguide holograms which uses the mentioned approaches. A specialized ray tracing program designed by the authors was also used. At the second step, the recording and experimental study of the samples of waveguide holographic periscopes with specified parameters were carried out. Main results. It has been defined that the inconstancy of the period of waveguide holograms and the wedge shape of the waveguides leads to distortions of a similar nature that cannot be fully compensated by the projection system. Errors in the orientation of waveguide holograms relative to each other, as well as errors in their periods, lead to the appearance of tangential distortion and magnification chromatism. The average output angle (angle of beams after the waveguide outcoupling) also changes greatly. Practical significance. We have identified the manufacturing errors that lead to specific distortions of the virtual image. The estimated requirements for certain types of errors in the waveguide holographic periscopes manufacturing process were determined. The results of the study can be used in the new designs development for augmented reality displays.
waveguide holograms, waveguide holographic periscopes, virtual image distortion, augmented reality displays
Acknowledgements:OCIS codes: 090.2820, 090.2890
References:1. Xiong J., Hsiang, E.L., He Z., et al. Augmented reality and virtual reality displays: Emerging technologies and future perspectives // Light: Sci. & Appl. 2021. V. 10. № 1. P. 216. https://doi.org/10.1038/s41377-021-00658-8
2. Cheng D., Wang Q., Liu Y., et al. Design and manufacture AR head-mounted displays: A review and outlook // Light: Advanced Manufacturing. 2021. V. 2. № 3. P. 350–369. https://doi.org/10.37188/lam.2021.024
3. Chang C., Bang K., Wetzstein G., et al. Toward the next-generation VR/AR optics: A review of holographic near-eye displays from a human-centric perspective // Optica. 2020. V. 7. № 11. P. 1563–1578. https://doi.org/10.1364/OPTICA.406004
4. Li Z., Lin P., Huang Y.W., et al. Meta-optics achieves RGB-achromatic focusing for virtual reality // Sci. Advances. 2021. V. 7. № 5. P. eabe4458. https://doi.org/10.1126/sciadv.abe4458
5. Xiong J., Wu S.T. Planar liquid crystal polarization optics for augmented reality and virtual reality: From fundamentals to applications // ELight. 2021. V. 1. № 1. P. 3. https://doi.org/10.1186/s43593-021-00003-x
6. Kress B.C., Pace M. Holographic optics in planar optical systems for next generation small form factor mixed reality headsets // Light: Advanced Manufacturing. 2022. V. 3. № 4. P. 771–801. https://doi.org/10.37188/lam.2022.042
7. Kress B.C., Peroz C. Optical architectures for displays and sensing in augmented, virtual, and mixed reality (AR, VR, MR) // Proc. SPIE. 2020. V. 11310. P. 1131001. http://doi.org/10.1117/3.2559304
8. Путилин А.Н., Морозов А.В., Копенкин С.С. и др. Голографические волноводные перископы в дисплеях дополненной реальности // Опт. и спектроск. 2020. Т. 128. № 11. С. 1694–1702. https://doi.org/10.21883/OS.2020.11.50172.93-20
Putilin A.N., Morozov A.V., Kopenkin S.S., et al. Holographic waveguide periscopes in augmented reality displays // Opt. and Spectrosc. 2020. V. 128. № 11. P. 1828–1836. https://doi.org/10.1134/s0030400x2011020x
9. Maimone A., Georgiou A., Kollin J.S. Holographic near-eye displays for virtual and augmented reality //ACM Transactions on Graphics (TOG). 2017. V. 36. № 4. P. 1–16. http://dx.doi.org/10.1145/3072959.3073624
10. Jang C., Bang K., Li G., et al. Holographic near-eye display with expanded eye-box // ACM Trans. on Graphics (TOG). 2018. V. 37. № 6. P. 1–14. https://doi.org/10.1145/3272127.3275069
11. Shin B., Kim S., Druzhin V., et al. Compact augmented-reality glasses using holographic optical element combiner // Practical Holography XXXIII: Displays, Materials, and Applications. 2019. V. 10944. P. 93–99. http://doi.org/10.1117/12.2507339
12. Путилин Н.А., Дубынин С.Е., Путилин А.Н. и др. Искажения записи и воспроизведения внеосевых голограммных фокусирующих зеркал в схемах дисплеев дополненной реальности // Оптический журнал. 2023. Т. 90. № 8. С. 29–43. http://doi.org/10.17586/1023-5086-2023-90-08-29-43
Putilin N.A., Dubynin S.E., Putilin A.N., et al. Recording and reconstruction distortion of off-axis hologram focusing mirror in augmented reality displays // J. Opt. Technol. 2023. V. 90. № 8.
13. Wang J., Zhou Q., Chen J., et al. Design of a see-through off-axis head-mounted-display optical system with an ellipsoidal surface // Current Optics and Photonics. 2018. V. 2. № 3. P. 280–285. http://doi.org/10.3807/COPP.2018.2.3.280
14. Shin B., Kim S., Druzhin V., et al. Eye-box expansion using waveguide and holographic optical element for augmented reality head-mounted display // Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR). SPIE. 2020. V. 11310. P. 142–147. http://doi.org/10.1117/12.254477
15. Kress B.C., Chatterjee I. Waveguide combiners for mixed reality headsets: A nanophotonics design perspective // Nanophotonics. 2020. V. 10. № 1. P. 41–74. http://doi.org/10.1515/nanoph-2020-0410
16. Solomashenko A., Kuznetsov A., Nikolaev V., et al. Development of a holographic waveguide with thermal compensation for augmented reality devices // Appl. Sci. 2022. V. 12. № 21. P. 11281. http://doi.org/10.3390/app122111281
17. Vostrikov G.N., Muravyev N.V., Angervaks A.E., et al. Method for compensating aberrations of a virtual image formed by an augmented reality display based on a cylindrical diffractive waveguide // App. Sci. 2023. V. 13. № 4. P. 2400. https://doi.org/10.3390/app13042400
18. Grant A.J. DigiLens: Design and fabrication considerations for holographic waveguide AR displays // SPIE AVR21 Industry Talks II. 2021. V. 11764. P. 117640M. https://doi.org/10.1117/12.2597450
19. Kress B.C., Cummings W.J. Towards the ultimate mixed reality experience: HoloLens display architecture choices // SID Symp. Digest of Technical Papers. 2017. V. 48. P. 127–131. https://doi.org/10.1002/sdtp.11586
20. Han J., Liu J., Yao X., et al. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms // Opt. Exp. 2015. V. 23. № 3. P. 3534–3549. https://doi.org/10.1364/OE.23.003534
21. Можаров Г.А. Геометрическая оптика: уч. пособ. 2-е изд. СПб.: изд. «Лань», 2019. 708 с.
Mozharov G.A. Geometric optics: Studies for universities [in Russian]. 2-nd ed. St. Petersburg: Publishing House "Lan", 2019. 708 p.
22. Запрягаева Л.А., Свешникова И.С. Расчет и проектирование оптических систем: учеб. для вузов. М.: Логос, 2000. 584 с.
Zapryagaeva L.A., Sveshnikova I.S. Calculation and design of optical systems: Studies for universities [in Russian]. Moscow: “Logos” Publ., 2000. 584 p.
23. Бобров С.Т., Грейсух Г.И., Туркевич Ю.Г. Оптика дифракционных элементов и систем. Л.: Машиностроение, 1986. 223 с.
Bobrov S.T., Greysukh G.I., Turkevich Yu.G. Optics of diffraction elements and systems [in Russian]. Leningrad: “Mashinostroenie” Publ., 1986. 223 p.
24. Introduction to integrated optics / Ed. by Barnoski M. N.Y.: Plenum Press, 1974. 515 p.