ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-05-16-24

УДК: 621.317.44, 539.143.43; 539.143.42

Magnetic resonance frequency shifts in quantum magnetometers based on the phenomenon of optical orientation of atoms

For Russian citation (Opticheskii Zhurnal):

 Картошкин В.А. Сдвиги частоты магнитного резонанса в квантовых магнитометрах на основе явления оптической ориентации атомов // Оптический журнал. 2024. Т. 91. № 5. С. 16–24. http://doi.org/10.17586/1023-5086-2024-91-05-16-24

 

 Kartoshkin V.A. Magnetic resonance frequency shifts in quantum magnetometers based on the phenomenon of optical orientation of atoms [in Russian] // Opticheskii Zhurnal. Opticheskii Zhurnal. 2024. V. 91. № 5. P. 16–24. http://doi.org/10.17586/1023-5086-2024-91-05-16-24

For citation (Journal of Optical Technology):
-
Abstract:
Subject of study. Magnetic resonance frequency shifts caused by spin exchange collisions involving optically oriented alkali atoms in the ground state. Aim of study. Theoretical study of spin exchange collisions involving optically oriented alkali atoms of different types to determine the temperature dependences of shifts for various pairs of alkali atoms under optical orientation conditions in order to establish optimal conditions for the construction of quantum magnetometers with optical pumping using mixtures of alkali atoms. Method. In this work, within the framework of the quantum theory of scattering, collisions between optically oriented alkali atoms are considered and, based on data on interaction potentials describing dimers of alkali atoms, the phases of scattering at these potentials and the imaginary parts of the complex cross section of spin exchange are calculated. The obtained energy dependences of the cross sections were used to construct the temperature dependences of the magnetic resonance frequency shifts. Main results. The temperature dependences of the magnetic resonance line frequency shifts were obtained for the following pairs of alkali atoms 39K – 133Cs, 39K – 85Rb and 133Cs – 85Rb. It has been established that in the case of a pair of alkali atoms 39K – 85Rb in the temperature region 480 K, the shift of the magnetic resonance line passes through zero for the hyperfine state F = 1. This indicates the absence of a negative influence of spin exchange on the position of the magnetic resonance line. Practical significance. The results obtained in the work can be used to create quantum electronics devices that operate on the principles of optical orientation of atoms and do not have spin exchange shifts. In particular, at the creating co-magnetometers with optical orientation of alkali atoms.
Keywords:

optical orientation of atoms, spin exchange, magnetic resonance frequency shifts

OCIS codes: 020.0020, 020.3690, 290.5850

References:

1. Chowdhury S.R. and Pradhan S. Optical pumping and relaxation of atomic population in assorted conditions // J. Phys. B: At. Mol. Opt. Phys. 2022. V. 55. № 16.   P. 165502. https://doi.org/10.1088/1361-6455/ac7ca6
2. Happer W. Optical pumping // Rev. Mod. Phys. 1972. V. 44. № 2. P. 169–249. https://doi.org/10.1103/RevModPhys.44.169
3. Вартанян Т.А. Современные проблемы оптики атомарных паров // Оптический журнал. 2016. Т. 83. № 11. C. 8–10.  Vartanyan T.A. Introduction by the editor of this special issue // J. Opt. Technol. 2016. V. 83. № 11. P. 652–653. https://doi.org/10.1364/JOT.83.000652
4. Wilson N., Light P., Luiten A., and Perrella C. Ultrastable optical magnetometry // Phys. Rev. Appl. 2019. V. 11. № 4. P. 044034. https://doi.org/10.1103/PhysRevApplied.11.044034
5. Pradhan S. Dual purpose atomic device for realizing atomic frequency standard and magnetic field measurement // US Patent № 9097750 B2. 2015. Publ. Aug. 4, 2015.
6. Petrenko M.V., Pazgalev A.S., Vershovskii A.K. Alloptical nonzero-field vector magnetic sensor for  agnetoencephalography // Phys. Rev. Appl. 2023. V. 20. № 2. P. 024001. https://doi.org/10.1103/PhysRevApplied. 20.024001
7. Вершовский А.К., Дмитриев С.П., Петренко М.В. Спин-обменное уширение магнитного MX-резонанса в цезии // Письма ЖТФ. 2021. T. 47. № 8. С. 51–54. http://dx.doi.org/10.21883/PJTF.2021.08.50856.18654  Vershovskii A.K., Dmitriev S.P., Petrenko M.V. Spinexchange broadening of the magnetic MX resonance in cesium // Tech. Phys. Lett. 2021. V. 47. № 6. P. 421–424. http://dx.doi.org/10.1134/S1063785021040301
8. Ghezali S., Laurent Ph., Lea S.N., and Clairon A. An experimental study of the spin-exchange frequency shift in a laser-cooled cesium fountain frequency standard // Europhys. Lett. 1996. V. 36. № 1. P. 25–30. https://doi.org/10.1209/epl/i1996-00182-9
9. Budker D. and Romalis M. Optical magnetometry // Nature Phys. 2007. V. 3. № 4. P. 227–234. https://doi.org/10.1038/nphys566

10. Александров Е.Б., Балабас М.В., Вершовский А.К., Пазгалев А.С. Новая версия квантового магнитометра: однокамерный Cs–K тандем на четырехквантовом резонансе в 39K // ЖТФ. 2000. Т. 70. № 7. С. 118–124.  Aleksandrov E.B., Balabas M.V., Vershovskii A.K., and Pazgalev A.S. A new model of a quantum magnetometer: A single-cell Cs-K tandem based on fourquantum resonance in 39K atoms // Tech. Phys. 2000. V. 45. № 7. P. 931–936. https://doi.org/10.1134/1.1259751
11. Chen Y., Quan W., Zou S., et al. Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer // Sci. Rep. 2016. V. 6. Article P. 36547. https://doi.org/10.1038/srep36547
12. Радциг А.А., Смирнов Б.М. Справочник по атомной и молекулярной физике / Под ред. Безрукова В.Н. М.: Атомиздат, 1980. 240 с.  Radzig A.A., Smirnov B.M. Handbook of atomic and molecular physics [in Russian] / Ed. Bezrukov V.N. Moscow: “Atomizdat” Publ., 1980. 240 p.
13. Сунакава С. Квантовая теория рассеяния / Пер. с япон. Иванчика А.А. под ред. Дремина И.М. М.: Мир, 1979. 268 c.  Sunakawa S. Quantum scattering theory [in Russian] / Transl. from Japanese by Ivanchik A.A., ed. by Dremin I.M. Moscow: “Mir” Publ., 1979. 268 p.
14. Ferber R., Klincare I., Nikolayeva O., et al. The ground electronic state of KCs studied by Fourier transform spectroscopy // J. Chem. Phys. 2008. V. 128. № 24. P. 244316. https://doi.org/10.1063/1.2943677
15. Pashov A., Docencko O., Tamanis M., et al. Coupling of the X1+ and a3+ states of KRb // Phys. Rev. A . 2007. V. 76. № 2. P. 022511. https://doi.org/10.1103/PhysRevA.76.022511
16. Docencko O., Tamanis M., Ferber R., et al. Singlet and triplet potentials of the ground-state atom pair Rb + Cs
studied by Fourier-transform spectroscopy // Phys. Rev. A. 2011. V. 83. № 5. P. 052519. https://doi.org/10.1103/PhysRevA.83.052519
17. Xie F., Sovkov V.B., Lyyra A.M., et al. Experimental investigation of the Cs2 a 3u+ triplet ground state: Multiparameter morse long range potential analysis and molecular constants // J. Chem. Phys. 2009. V. 130. № 5. P. 051102. https://doi.org/10.1063/1.3075580
18. Amiot C. and Dulieu O. The Cs2 ground electronic state by Fourier transform spectroscopy: Dispersion coefficients // J. Chem. Phys. 2002. V. 117. № 11. P. 5155–5164. https://doi.org/10.1063/1.1499122
19. Strauss C., Takekoshi T., Lang F., Winkler K. Hyperfine, rotational, and vibrational structure of the a 3u+ state of 87Rb2 // Phys. Rev. A. 2010. V. 82. № 5. P. 052514. https://doi.org/10.1103/PhysRevA.82.052514
20. Окуневич А.И. Спин-обменные сдвиги частоты в смеси щелочных атомов в атмосфере инертного газа // Опт. спектроск. 1995. Т. 79. № 5. С. 718–728.  Okunevich A.I. Spin-exchange frequency shifts for a mixture of alkali atoms in an inert gas atmosphere [in Russian] // Opt. Spektrosc. 1995. V. 79. № 5. P. 718–728.
21. Картошкин В.А. Сдвиги частоты магнитного резонанса в тандемном Cs-K-магнитометре, обусловленные спиновым обменом // Опт. спектроск. 2020. T. 128. № 9. С. 1244–1248 http://dx.doi.org/10.21883/OS.2020.09.49859.125-20
 Kartoshkin V.A. Magnetic-resonance frequency shifts in a tandem Cs-K magnetometer induced by spin exchange // Opt. Spectrosc. 2020. V. 128. № 9. P. 1355–1358. http://dx.doi.org/10.1134/S0030400X2009012X
22. Kartoshkin V.A. Frequency shifts of the magnetic resonance of Rb and K atoms in the K-Rb tandem magnetometer // J. Phys.: Conf. Ser. 2020. V. 1697. № 1. P. 012146. http://dx.doi.org/10.1088/1742-6596/1697/1/012146
23. Картошкин В.А. Сдвиги частоты магнитного резонанса спин-поляризованных атомов цезия в смеси Cs-Rb // Опт. спектроск. 2018. Т. 125. № 1. С. 14–17. http://dx.doi.org/10.21883/OS.2018.07.46259.62-18  Kartoshkin V.A. Magnetic resonance frequency shifts of spin-polarized Cesium atoms in a Cs-Rb mixture // Opt. Spectrosc. 2018. V. 125. № 1. P. 10–13. http://dx.doi.org/10.1134/S0030400X18070159