DOI: 10.17586/1023-5086-2024-91-05-54-65
УДК: 7.02 535-14
Optical and terahertz methods for the study of oil painting artworks authors
Full text on elibrary.ru
Publication in Journal of Optical Technology
Большаков И.С., Лыкина А.А., Кравценюк О.В., Сирро С.В., Торопов В.Ю., Цветков А.Р., Taday P.F., Arnone D.D., Смолянская О.А. Оптические и терагерцовые методы исследования картин станковой масляной живописи // Оптический журнал. 2024. Т. 91. № 5. С. 54–65. http://doi.org/10.17586/1023-5086-2024-91-05-54-65
Bolshakov I.S., Lykina A.A., Kravtsenyuk O.V., Sirro S.V., Toropov V.Y., Tsvetkov A.R., Taday P.F., Arnone D.D., Smolyanskaya O.A. Optical and terahertz methods for the study of oil painting artworks authors [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 5. P. 54–65. http://doi.org/10.17586/1023-5086-2024-91-05-54-65
Subject of study. Terahertz tomography methods applied to the study of easel oil paintings. Aim of study. Evaluating the effectiveness of terahertz tomography for analyzing the layered structure of artworks and detecting hidden damages, elements, and annotations. Method. Traditional analysis methods such as infrared, ultraviolet fluorescence, and X-ray imaging were employed. Special emphasis was placed on terahertz tomography, enabling non-invasive imaging of internal structures. Main results. The study demonstrated that terahertz tomography allows differentiation of materials used in oil paintings. This method enables a detailed examination of the layered structure without damaging the object under investigation, revealing elements not detectable by other research methods. The scientific novelty lies in the proposed application of terahertz tomography for preliminary examinations of paintings in situ to detect hidden defects and possible inscriptions on the reverse side of the artwork. Practical significance. The obtained results are valuable for researching, assessing the preservation status, and restoring oil paintings, especially when detecting defects and hidden elements beneath paint layers without damaging the colorful surface. The terahertz tomography method proves particularly effective when applied in situ, avoiding the necessity of dismantling the painting.
terahertz tomography, oil paintings, layered structure, restoration methods, painting material analysis methods, infrared visualization, ultraviolet fluorescence visualization, X-ray imaging, hidden defects, non-invasive research methods, in situ studies
Acknowledgements:OCIS codes: 100.2960, 100.3010, 200.4560
References:1. Вейко В.П., Сирро С.В. Исследование взаимодействия лазерного излучения с покровными лаками, используемыми в масляной живописи // Сб. тр. XI междунар. конф. Фундаментальные проблемы оптики — 2019. Санкт-Петербург, Россия. 21–25 октября 2019. С. 165–167. Veyko V.P., Sirro S.V. Investigation of the interaction of laser radiation with coating varnishes used in oil painting [in Russian] // XI Internat. Conf. Fundamental problems of optics — 2019 (Collection of reports). SaintPetersburg, Russia. October 21–25, 2019. P.165–167.
2. Сирро С.В. Исследование произведений искусства и объектов культурно-исторического наследия. Новые технологии и их применение // В мире неразрушающего контроля. 2018. Т. 21. № 3. С. 56–59. Sirro S.V. Research of works of art and objects of cultural and historical heritage. New technologies and their application [in Russian] // In the World of Nondestructive Testing. 2018. V. 21. № 3. P. 56–59.
3. Borg B., Dunn M., Amg A., et al. The application of state-of-the-art technologies to support artwork conservation: Literature review // J. Cultural Heritage. 2020. V. 44. P. 239–259. https://doi.org/10.1016/j.culher.2020.02.010
4. Cosentino A., Stout S. Photoshop and multispectral imaging for art documentation // e-Preservation Sci. 2014. V. 11. P. 91–98.
5. Rorimer J.J. Ultra-violet rays and their use in the examination of works of art. Metropolitan Museum of Art, 1931. 173 p.
6. Moon T., Schilling M.R., Thirkettle S. A note on the use of false-color infrared photography in conservation // Studies in Conservation. 1992. P. 42–52. https://doi.org/10.2307/1506436
7. Bitossi G., Giorgy R., Mauro M., et al. Spectroscopic techniques in cultural heritage conservation: A survey // Appl. Spectrosc. Rev. 2005. V. 40. № 3. P. 187–228. https://doi.org/10.1081/ASR-200054370
8. Smolyanskaya O.A., Chernomyrdin N.V., Konovko A.A., et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids // Progress in Quantum Electronics. 2018. V. 62. P. 1–77. https://doi.org/10.1016/j.pquantelec.2018.10.001
9. Smolyanskaya O.A., Dolganova I., Zaytsev K., et al. Tissue optical clearing in the terahertz range // Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging. 2022. P. 445–458. https://doi.org/10.1201/9781003025252-28
10. Baranova A., Lykina A.A., Smolyanskaya O.A., et al. Optical properties of crystalline lactose fluidized with dilutions of various substances in the terahertz frequency range // Pharmaceutics. 2021. V. 14. № 1. P. 32. https://doi.org/10.3390/pharmaceutics14010032
11. Lykina A.A., Nazarov M.M., Konnikova M.R., et al. Terahertz spectroscopy of diabetic and non-diabetic human blood plasma pellets // J. Biomed. Opt. 2021. V. 26. № 4. P. 043006–043006. https://doi.org/10.1117/1.JBO.26.4.043006
12. Kulya M.S., Odlyanitsky E.L., Cassar Q., et al. Fast terahertz spectroscopic holographic assessment of optical properties of diabetic blood plasma // J. Infrared, Millimeter, and Terahertz Waves. 2020. V. 41. P. 1041–1056. https://doi.org/10.1007/s10762-021-00782-x
13. Smolyanskaya O.A., Lazareva E.N., Nalegaev S.S., et al. Multimodal optical diagnostics of glycated biological tissues // Biochemistry (Moscow). 2019. V. 84. P. 124–143. https://doi.org/10.1134/S0006297919140086
14. Smolyanskaya O.A., Schelkanova E.L., Tcypkin A.N., et al. Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods // Biomed. Opt. Exp. 2018. V. 9. № 3. P. 1198–1215. https://doi.org/10.1364/BOE.9.001198
15. Афонин М.В., Балбекин Н.С., Гареев Г.З. и др. Особенности терагерцовых спектров наночастиц оксида железа в оболочке из диоксида кремния и наночастиц оксида и гидроксида железа // Оптический журнал. 2017. Т. 84. № 8. С. 16–22. Afonin V., Balbekin N.S., Gareev G.Z., et al. Features of the terahertz spectra of iron oxide nanoparticles in a silicon dioxide shell and of iron oxide and hydroxide nanoparticles // J. Opt. Technol. 2017. V. 84. № 8. P. 515–520. https://doi.org/10.1364/JOT.84.000515
16. Дука Ц.М., Кудрявцев И.В., Серебрякова М.К. и др. Исследование действия широкополосного терагерцового излучения на функциональную активность клеток // Оптический журнал. 2013. Т. 80. № 11. С. 16–23. Duka C.M., Kudryavtsev I.V., Serebryakova M.K., et al. Investigation of the effect of broadband terahertz radiation on the functional activity of cells // J. Opt. Technol. 2013. V. 80. № 11. P. 655–660. https://doi.org/10.1364/JOT.80.000655
17. Грачев Ю.В., Куклин И.А., Смолянская О.А. и др. Исследование воздействия излучения диапазона частот 0,05–2 ТГц на биологические ткани различной толщины в медицинской диагностике // Оптический журнал. 2010. Т. 77. № 11. С. 92–94. Grachev Y.V., Kuklin I.A., Smolyanskaya O.A., et al. Study of how radiation of the frequency range 0.05–2 THz affects biological tissues of various thickness in medical diagnosis // J. Opt. Technol. 2010. V. 77. № 11. P. 731–733. https://doi.org/10.1364/JOT.77.000731
18. Fukunaga K. THz technology applied to cultural heritage in practice. Springer, 2016. 144 p.
19. Chopard A., Tsiplakova E., Balbekin N., et al. Singlescan multiplane phase retrieval with a radiation of terahertz quantum cascade laser // Appl. Phys. B. 2022. V. 128. № 3. P. 63. https://doi.org/10.1007/s00340-022-07787-x
20. Dandolo C.L.K., Lopez M., Ueno Y., et al. Toward a multimodal fusion of layered cultural object images: Complementarity of optical coherence tomography and terahertz time-domain imaging in the heritage field //Appl. Opt. 2019. V. 58. № 5. P. 1281–1290. https://doi.org/10.1364/AO.58.001281
21. Guillet J.-P., Roux M., Wang K., et al. Art painting diagnostic before restoration with terahertz and millimeter waves // J. Infrared, Millimeter, and Terahertz Waves. 2017. V. 38. P. 369–379. https://doi.org/10.1007/s10762-017-0358-1
22. Dong J., Locquet A., Melis M., et al. Global mapping of stratigraphy of an old-master painting using sparsitybased terahertz reflectometry // Sci. Rep. 2017. V. 7. № 1. P. 15098. https://doi.org/10.1038/s41598-017-15069-2
23. Ma X., Guillet J.-P., Wang K., et al. Terahertz frequency modulated continuous wave imaging for nondestructive evaluation of painting and multilayer parts // Proc. SPIE. 2018. P. 246–251. https://doi.org/10.1117/12.2291016
24. Cassar Q., Guillet J.-P., Koch-Dandolo C.L., et al. Characterization of varnish ageing and its consequences on terahertz imagery: Demonstration on a painting presumed of the French renaissance // J. Infrared, Millimeter, and Terahertz Waves. 2020. V. 41. P. 1556–1566. https://doi.org/10.1007/s10762-020-00733-y
25. Andreev I.I., Sirro S.V., Lykina A.A., et al. Necessity and use of a multilayer test object based on an anonymous 19th century copy of a painting by Ivan Konstantinovich Aivazovsky (1817–1900) // Heritage. 2022. V. 5. № 4. Р. 2955–2965. https://doi.org/10.3390/heritage5040153
26. Gomez-Sepulveda A.M., Hernandez-Serrano A.I., Radpour R., et al. History of Mexican easel paintings from an altarpiece revealed by non-invasive terahertz time-domain imaging // J. Infrared, Millimeter, and Terahertz Waves. 2017. V. 38. P. 403–412. https://doi.org/10.1007/s10762-016-0346-x