DOI: 10.17586/1023-5086-2024-91-06-62-66
УДК: 535.37
Luminescence of carbon quantum dots in amorphous carbon
Full text on elibrary.ru
Чекулаев М.С., Ястребов С.Г. Люминесценция углеродных квантовых точек в аморфном углероде // Оптический журнал. 2024. Т. 91. № 6. С. 62–66. http://doi.org/10.17586/1023-5086-2024-91-06-62-66
Chekulaev M.S., Yastrebov S.G. Luminescence of carbon quantum dots in amorphous carbon [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 6. P. 62–66. http://doi.org/10.17586/1023-5086-2024-91-06-62-66
Study Subject. Luminescence spectrum of amorphous protonated carbon (a-C:H) containing carbon quantum dots. Aim of Study. Identifying the dependance of maximum in luminescence spectrum of amorphous protonated carbon (a-C:H) on the presence of fragments with different configuration. Method. Comparison of the typical spectrum with the corresponding spectra of the nearest analogs, polycyclic aromatic hydrocarbons containing a small number of aromatic rings. Main results. Bluelight blue fluorescence in a-C:H [2] and related materials is experimentally observed due to the presence of an ensemble of graphene fragments embedded in a diamond-like matrix. Good agreement with experiment is obtained under the assumption that the inhomogeneously broadened spectra of three types of analogs taken with different weights describe well the experimental spectrum, namely acetonaphthylene, pyrene and azulene. The study can be generalized to a wider range of carbon materials for which fluorescence in the short-wave region of the spectrum is observed. Practical significance. The results of the study of properties of carbon quantum dots in amorphous carbon will serve as a basis for the development of materials for conversion of electromagnetic radiation of the ultraviolet range of the spectrum into the visible range.
amorphous carbon, carbon quantum dots
OCIS codes: 160.2750
References:1. Song S.Y., Liu K.K., Cao Q. et al. Ultraviolet phosphorescent carbon nanodots // Light Sci. Appl. 2022. № 11. P. 146. https://doi.org/10.1038/s41377-022-00837-1
2. Li Z., Li X., Ren Z., Gao Q., Zhang X., Han G. Bright blue photoluminescence from the amorphous carbon via surface plasmon enhancement // Opt. Express. 2019. № 19. P. 17935–17943. https://doi.org/10.1364/OE.19.017935
3. Robertson J., O’Reilly E.P. Electronic and atomic structure of amorphous carbon // Phys. Rev. B. 1987. № 35. P. 2946. https://doi.org/10.1103/PhysRevB.35.2946
4. Robertson J. Photoluminescence mechanism in amorphous hydrogenated carbon // Diamond and Related Materials. 1996. № 5 P. 457–460. https://doi.org/10.1016/0925-9635(95)00386-X
5. Tauc J., Grigorovici R., Vancu A. Optical properties and electronic structure of amorphous germanium // Phys. stat. sol. 1966. № 15. P. 627–637. https://doi.org/10.1002/pssb.19660150224
6. Sidorov A.I., Lebedev V.F., Antropova T.V. Modification of nanoporous glass with amorphous carbon using pulsed laser radiation // Journal of Optical Technology. 2019. V. 86(7). P. 435–438. https://doi.org/10.1364/JOT.86.000435
7. Frackowiak D. The Jablonski diagram // J. Photochem. Photobiol. B. 1988. V. 2. № 3. P. 399. https://doi.org/10.1016/1011-1344(88)85060-7
8. Zhang Yi., Liu P., Li Yo., Zhan R., Huang Zh., Lin H. Study on fluorescence spectroscopy of PAHs with different molecular structures using laser-induced fluorescence (LIF) measurement and TD-DFT calculation // Spectrochim. Acta A. 2020. V. 224. P. 117450. https://doi.org/10.1016/j.saa.2019.117450
9. Yamaguchi T., Kimura Y., Hirota N. Vibrational energy relaxation of azulene in the state. II. Solvent density dependence // J. Chem. Phys. 2000. V. 113. P. 4340–4348. https://doi.org/10.1063/1.1288391
10. Keenan J. Mintz, Mattia Bartoli, Massimo Rovere, Yiqun Zhou, Sajini D. Hettiarachchi, Suraj Paudyal, Jiuyan Chen, Justin B. Domena, Piumi Y. Liyanage,
Rachel Sampson, Durga Khadka, Raja R. Pandey, Sunxiang Huang, Charles C. Chusuei, Alberto Tagliaferro, Roger M. Leblanc. A deep investigation into the structure of carbon dots // Carbon. 2021. V. 173. P. 433–447.