DOI: 10.17586/1023-5086-2024-91-06-99-107
УДК: 539.27
Effect of changing the growth mechanism on the synthesis of germanium two-dimensional layers and quantum dots on silicon
Full text on elibrary.ru
Кукенов О.И., Дирко В.В., Соколов А.С., Лозовой К.А., Швалева К.И., Коханенко А.П., Войцеховский А.В. Влияние смены механизма роста на синтез двумерных слоёв и квантовых точек германия на кремнии // Оптический журнал. 2024. Т. 91. № 6. С. 99–107. http://doi.org/10.17586/1023-5086-2024-91-06-99-107
Kukenov O.I., Dirko V.V., Sokolov A.S., Lozovoy K.A., Shvaleva O.I., Kokhanenko A.P., Voitsekhovskii A.V. Effect of changing the growth mechanism on the synthesis of germanium two-dimensional layers and quantum dots on silicon [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 6. P. 99–107. http://doi.org/10.17586/1023-5086-2023-90-05-99-107
Subject of study. The work studied the formation of germanium quantum dots on a silicon with (100) crystallographic orientation under different growth regimes. Aim of study. The work is devoted to conducting experimental studies of the influence of growth mechanisms on the formation of germanium layers and quantum dots on a silicon (100) substrate for the production of optical elements based on silicon-germanium nanostructures. Methods. After cleaning the Si substrate pre-epitaxially, germanium is synthesized on Si(100) through molecular beam epitaxy. The surface morphology is analyzed using reflection high-energy electron diffraction during synthesis and scanning electron microscopy after deposition. Main results. The work determines the temperature ranges at which the Si/Si(100) growth occurs due to the nucleation of islands, due to the movement of steps, and in combination. The effect of changing growth mechanisms on the size and density of Ge quantum dots on Si(100) is shown. Practical significance. The research results provide insight into the influence of growth mechanisms on the sizes of formed germanium quantum dots on silicon, which will make it possible to create nanophotonics and nanoelectronics elements with strictly specified parameters.
quantum dots, 2D layers, molecular beam epitaxy, reflection high-energy electron diffraction, germanium, silicon
Acknowledgements:OCIS codes: 230.5590, 250.0040, 180.5810
References:1. Battaglia C., Cuevas A., Wolf S.D. High-efficiency crystalline silicon solar cells: status and perspectives // Energy Environ. Sci. 2016. V. 9. P. 1552–1576. https://doi.org/10.1039/C5EE03380B
2. Badawy W.A. A review on solar cells from Si-single crystals to porous materials and quantum dots // Journal of Advanced Research. 2015. V. 6. № 2. P. 123–132. https://doi.org/10.1016/j.jare.2013.10.001
3. Voitsekhovskii A.V., Dzyadukh S.M., Gorn D.I., Mikhailov N.N., Dvoretsky S.A., Sidorov G.Yu., Yakushev M.V. Unipolar barrier structures based on n-HgCdTe with superlattices as a barrier. Review [In Russian] // Opticheskii Zhurnal. 2024. V. 91. № 2. P. 6–22. http://doi.org/10.17586/1023-5086-2024-91-02-6-22
4. Mohamed A.H., Mohamed K.Z., Hani E.E.-Ali. Review: Geometric interpretation of reflection and transmission RHEED patterns // Micron. 2022. V. 159. P. 103286. https://doi.org/10.1016/j.micron.2022.1032865. Dirko V.V., Lozovoy K.A., Kokhanenko A.P., Voitsekhovskii A.V. High-resolution RHEED analysis of dynamics of low-temperature superstructure transitions in Ge/Si(001) epitaxial system // Nanotechnology. 2022. V. 33. № 11. P. 115603. https://doi.org/10.1088/1361-6528/ac3f56
6. Arapkina, L.V., Yuryev V.A. Classification of Ge hut clusters in arrays formed by molecular beam epitaxy at low temperatures on the Si(001) surface // PhysicsUspekhi. 2010. V. 53. № 3. P. 289–302. https://doi.org/10.3367/ufne.0180.201003e.0289
7. Tersoff J., Tromp R.M. Shape transition in growth of strained islands: Spontaneous formation of quantum wires // Physical Review Letters. 1993. V. 70. P. 2782–2785. https://doi.org/10.1103/PhysRevLett.70.2782
8. Douhan R.M.H., Kokhanenko A.P., Lozovoy K.A. Parameters of photo-sensitive structures based on Ge/Si nanogeterostructures // Russian Physics Journal. 2018. V. 61. № 7. P. 1194–1201. https://doi.org/10.1007/s11182-018-1517-0
9. Voigtländer B. Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth // Surface Science Reports. 2001. V. 43. № 5–8. P. 127–254. https://doi.org/10.1016/S0167-5729(01)00012-7
10. Hervieu Y.Y., Yesin M.Yu., Deryabin A.S. et al. Convergence of steps on the Si(100) surface: experiment and modeling [in Russian] // Russian Physics Journal. 2023. V. 66. № 4. P. 85–92. https://doi.org/10.17223/00213411/66/4/10
11. Yesin M.Yu., Deryabin A.S., Kolesnikov A.V. et al. Study of the kinetics of approaching steps of the Si(100) surface [in Russian] // Solid State Physics. 2023. V. 65. № 2. P. 173–179. https://doi.org/10.21883/PSS.2023.02.55397.476
12. Swartzentruber B.S., Kitamura N., Lagally M.G. et al. Behavior of steps on Si(001) as a function of vicinality // Phys. Rev. B. 1993. V. 47. № 20. P. 13432–13441. https://doi.org/10.1103/physrevb.47.13432
13. Mo Y.-W., Lagally M.G. Anisotropy in surface migration of Si and Ge on Si(001) // Surface Science. 1991. V. 248. № 3. P. 313–320. https://doi.org/10.1016/0039-6028(91)91177-Y
14. Hervieu Y.Y. Formation of double steps on Si (100): Effect of permeability of the A-steps // Russian Physics Journal. 2020. V. 63. № 6. P. 901–906. https://doi.org/10.1007/s11182-020-02116-1
15. Kukenov O.I., Sokolov A.S., Dirko V.V. et al. Analysis of the temperature dependence of homoepitaxial growth of Si on Si by reflection high-energy electron diffraction // St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2023. V. 16. № 3.1. P. 112–116. https://doi.org/10.18721/JPM.163.120
16. Liu K., Berbezier I., Favre L. et al. Self-organization of SiGe planar nanowires via anisotropic elastic field // Physical Review Materials. 2019. V. 3. P. 023403. https://doi.org/10.1103/PhysRevMaterials.3.023403